results for au:Zeilinger_A in:quant-ph

- Mar 05 2018 quant-ph arXiv:1803.00583v1Techniques for the distribution of quantum-secured cryptographic keys have reached a level of maturity allowing them to be implemented in all kinds of environments, away from any form of laboratory infrastructure. Here, we detail the distribution of entanglement between Malta and Sicily over a 96 km-long submarine telecommunications optical fibre cable. We used this standard telecommunications fibre as a quantum channel to distribute polarisation-entangled photons and were able to observe around 257 photon pairs per second, with a polarisation visibility above 90%. Our experiment demonstrates the feasibility of using deployed submarine telecommunications optical fibres as long-distance quantum channels for polarisation-entangled photons. This opens up a plethora of possibilities for future experiments and technological applications using existing infrastructure.
- Jan 25 2018 quant-ph physics.optics arXiv:1801.07825v2Beams of light with a large topological charge significantly change their spatial structure when they are focussed strongly. Physically, it can be explained by an emerging electromagnetic field component in the direction of propagation, which is neglected in the simplified scalar wave picture in optics. Here we ask: Is this a specific photonic behavior, or can similar phenomena also be predicted for other species of particles? We show that the exact same phenomenon also exists for relativistic electrons as well as for focused gravitational waves, but for different physical reasons. For electrons, which are described by the Dirac equation, the additional intensity arises from a Spin-Orbit coupling in the relativistic regime. In gravitational waves described with linearized general relativity, the curvature of space-time between the transverse and propagation direction leads to the additional intensity contribution. Thus, this universal phenomenon exists for both massive and massless elementary particles with Spin 1/2, 1 and 2. It would be very interesting whether other types of particles such as composite systems (neutrons or C$_{60}$) or neutrinos show a similar behaviour and how this phenomenon can be explained in a unified physical way.
- Jan 16 2018 quant-ph arXiv:1801.04418v1We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ~kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive OR operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was on the one hand the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a videoconference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work points towards an efficient solution for an ultralong-distance global quantum network, laying the groundwork for a future quantum internet.
- Dec 11 2017 quant-ph physics.optics arXiv:1712.02892v1We present an in principle lossless sorter for radial modes of light, using accumulated Gouy phases. The experimental setups have been found by a computer algorithm, and can be intuitively understood in a geometric way. Together with the ability to sort angular-momentum modes, we now have access to the complete 2-dimensional transverse plane of light. The device can readily be used in multiplexing classical information. On a quantum level, it is an analog of the Stern-Gerlach experiment -- significant for the discussion of fundamental concepts in quantum physics. As such, it can be applied in high-dimensional and multi-photonic quantum experiments.
- Sep 29 2017 quant-ph arXiv:1709.09974v1Interference of two beams produced at separate biphoton sources was first observed more than two decades ago. The phenomenon, often called "induced coherence without induced emission", has recently gained attention after its applications to imaging, spectroscopy, and measuring biphoton correlations have been discovered. The sources used in the corresponding experiments are nonlinear crystals pumped by laser light. The use of a laser pump makes the occurrence of induced (stimulated) emission unavoidable and the effect of stimulated emission can be observed in the joint detection rate of the two beams. This fact raises the question whether the stimulated emission also lays a role in inducing the coherence. Here we investigate a case in which the crystals are pumped with a single-photon Fock state. We find that coherence is induced even though the possibility of stimulated emission is now fully ruled out. Furthermore, the joint detection rate of the two beams becomes ideally zero and does no longer change with the pump power. We illustrate our results by numerical simulations and by comparisons with experimental findings. Our results rule out any classical or semi-classical explanation of the phenomenon and also imply that similar experiments can be performed with fermions, for which stimulated emission is strictly forbidden.
- Aug 22 2017 quant-ph physics.optics arXiv:1708.06101v1Quantum information science and quantum information technology have seen a virtual explosion world-wide. It is all based on the observation that fundamental quantum phenomena on the individual particle or system-level lead to completely novel ways of encoding, processing and transmitting information. Quantum mechanics, a child of the first third of the 20th century, has found numerous realizations and technical applications, much more than was thought at the beginning. Decades later, it became possible to do experiments with individual quantum particles and quantum systems. This was due to technological progress, and for light in particular, the development of the laser. Hitherto, nearly all experiments and also nearly all realizations in the fields have been performed with qubits, which are two-level quantum systems. We suggest that this limitation is again mainly a technological one, because it is very difficult to create, manipulate and measure more complex quantum systems. Here, we provide a specific overview of some recent developments with higher-dimensional quantum systems. We mainly focus on Orbital Angular Momentum (OAM) states of photons and possible applications in quantum information protocols. Such states form discrete higher-dimensional quantum systems, also called qudits. Specifically, we will first address the question what kind of new fundamental properties exist and the quantum information applications which are opened up by such novel systems. Then we give an overview of recent developments in the field by discussing several notable experiments over the past 2-3 years. Finally, we conclude with several important open questions which will be interesting for investigations in the future.
- The Greenberger-Horne-Zeilinger (GHZ) argument provides an all-or-nothing contradiction between quantum mechanics and local-realistic theories. In its original formulation, GHZ investigated three and four particles entangled in two dimensions only. Very recently, higher dimensional contradictions especially in three dimensions and three particles have been discovered but it has remained unclear how to produce such states. In this article we experimentally show how to generate a three-dimensional GHZ state from two-photon orbital-angular-momentum entanglement. The first suggestion for a setup which generates three-dimensional GHZ entanglement from these entangled pairs came from using the computer algorithm Melvin. The procedure employs novel concepts significantly beyond the qubit case. Our experiment opens up the possibility of a truly high-dimensional test of the GHZ-contradiction which, interestingly, employs non-Hermitian operators.
- Jul 20 2017 quant-ph arXiv:1707.05855v1We introduce unitary quantum gates for photon pair creation in spontaneous parametric down-conversion nonlinear crystals (NLs) and for photon path alignment. These are the two key ingredients for the method of "induced coherence without induced emission" and many ensuing variations thereof. The difficulty in doing so stems from an apparent mixing of the mode picture (such as the polarization of photons) and the Fock picture (such as the existence of the photons). We illustrate utility of these gates by obtaining quantum circuits for the experimental setups of the frustrated generation of photon pairs, identification of a point-like object with undetected photons, and creation of a Bell state. We also introduce an effective nonunitary description for the action of NLs in experiments where all the NLs are pumped coherently. As an example, by using this simplifying picture, we show how NLs can be used to create superposition of given quantum states in a modular fashion.
- Jul 19 2017 quant-ph arXiv:1707.05760v1The Bell basis is a distinctive set of maximally entangled two-particle quantum states that forms the foundation for many quantum protocols such as teleportation, dense coding and entanglement swapping. While the generation, manipulation, and measurement of two-level quantum states is well understood, the same is not true in higher dimensions. Here we present the experimental generation of a complete set of Bell states in a four-dimensional Hilbert space, comprising of 16 orthogonal entangled Bell-like states encoded in the orbital angular momentum of photons. The states are created by the application of generalized high-dimensional Pauli gates on an initial entangled state. Our results pave the way for the application of high-dimensional quantum states in complex quantum protocols such as quantum dense coding.
- How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states, and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments - a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.
- May 19 2017 quant-ph arXiv:1705.06646v2We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and Graph Theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the complexity class #P-complete, thus cannot be done efficiently. To strengthen the link further, theorems from Graph Theory -- such as Hall's marriage problem -- are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and potentially simulate properties of Graphs and Networks with quantum experiments (such as critical exponents and phase transitions).
- Models of quantum systems on curved space-times lack sufficient experimental verification. Some speculative theories suggest that quantum properties, such as entanglement, may exhibit entirely different behavior to purely classical systems. By measuring this effect or lack thereof, we can test the hypotheses behind several such models. For instance, as predicted by Ralph and coworkers [T C Ralph, G J Milburn, and T Downes, Phys. Rev. A, 79(2):22121, 2009, T C Ralph and J Pienaar, New Journal of Physics, 16(8):85008, 2014], a bipartite entangled system could decohere if each particle traversed through a different gravitational field gradient. We propose to study this effect in a ground to space uplink scenario. We extend the above theoretical predictions of Ralph and coworkers and discuss the scientific consequences of detecting/failing to detect the predicted gravitational decoherence. We present a detailed mission design of the European Space Agency's (ESA) Space QUEST (Space - Quantum Entanglement Space Test) mission, and study the feasibility of the mission schema.
- Feb 24 2017 quant-ph arXiv:1702.07299v1Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multi-level quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well-studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X-gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z-gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X-gate is based on independent access to quantum states with different parities and can thus be easily generalized to other photonic degrees-of-freedom, as well as to other quantum systems such as ions and superconducting circuits.
- Jan 05 2017 quant-ph physics.optics arXiv:1701.00989v1The secure communication of information plays an ever increasing role in our society today. Classical methods of encryption inherently rely on the difficulty of solving a problem such as finding prime factors of large numbers and can, in principle, be cracked by a fast enough machine. The burgeoning field of quantum communication relies on the fundamental laws of physics to offer unconditional information security. Here we introduce the key concepts of quantum superposition and entanglement as well as the no-cloning theorem that form the basis of this field. Then, we review basic quantum communication schemes with single and entangled photons and discuss recent experimental progress in ground and space-based quantum communication. Finally, we discuss the emerging field of high-dimensional quantum communication, which promises increased data rates and higher levels of security than ever before. We discuss recent experiments that use the orbital angular momentum of photons for sharing large amounts of information in a secure fashion.
- Jan 05 2017 quant-ph arXiv:1701.00944v1The phenomenon of molecular optical activity manifests itself as the rotation of the plane of linear polarization when light passes through chiral media. Measurements of optical activity and its wavelength dependence, optical rotatory dispersion, can reveal information about intricate properties of molecules, such as the 3D arrangement of atoms comprising a molecule. Given a limited probe power, quantum metrology offers the possibility to outperform classical measurements. This holds particular appeal when samples may be damaged by high powers, a potential concern for chiroptical studies. Here we show the first experiment in which multi-wavelength polarization-entangled photon pairs are used to measure the optical activity and optical rotatory dispersion exhibited by a solution of chiral molecules. Our work paves the way for quantum-enhanced measurements of chirality, with potential applications in chemistry, biology, materials science, and the pharmaceutical industry. The scheme we employ for probing the wavelength dependence allows to surpass the information extracted per photon in a classical measurement, and can also be used for more general differential measurements.
- Nov 22 2016 quant-ph astro-ph.CO arXiv:1611.06985v2Bell's theorem states that some predictions of quantum mechanics cannot be reproduced by a local-realist theory. That conflict is expressed by Bell's inequality, which is usually derived under the assumption that there are no statistical correlations between the choices of measurement settings and anything else that can causally affect the measurement outcomes. In previous experiments, this "freedom of choice" was addressed by ensuring that selection of measurement settings via conventional "quantum random number generators" was space-like separated from the entangled particle creation. This, however, left open the possibility that an unknown cause affected both the setting choices and measurement outcomes as recently as mere microseconds before each experimental trial. Here we report on a new experimental test of Bell's inequality that, for the first time, uses distant astronomical sources as "cosmic setting generators." In our tests with polarization-entangled photons, measurement settings were chosen using real-time observations of Milky Way stars while simultaneously ensuring locality. Assuming fair sampling for all detected photons, and that each stellar photon's color was set at emission, we observe statistically significant $\gtrsim 7.31 \sigma$ and $\gtrsim 11.93 \sigma$ violations of Bell's inequality with estimated $p$-values of $ \lesssim 1.8 \times 10^{-13}$ and $\lesssim 4.0 \times 10^{-33}$, respectively, thereby pushing back by $\sim$600 years the most recent time by which any local-realist influences could have engineered the observed Bell violation.
- Oct 19 2016 quant-ph arXiv:1610.05530v1We observe spatial fringes in the interference of two beams, which are controlled by a third beam through the phenomenon of induced coherence without induced emission. We show that the interference pattern depends on the alignment of this beam in an analogous way as fringes created in a traditional division-of-amplitude interferometer depend on the relative alignment of the two interfering beams. We demonstrate that the pattern is characterized by an equivalent wavelength, which corresponds to a combination of the wavelengths of the involved physical light beams.
- Oct 19 2016 quant-ph arXiv:1610.05529v2We report a measurement of the transverse momentum correlation between two photons by detecting only one of them. Our method uses two identical sources in an arrangement, in which the phenomenon of induced coherence without induced emission is observed. In this way, we produce an interference pattern in the superposition of one beam from each source. We quantify the transverse momentum correlation by analyzing the visibility of this pattern. Our approach might be useful for the characterization of correlated photon pair sources and may lead to an experimental measure of continuous variable entanglement, which relies on the detection of only one of two entangled particles.
- Oct 17 2016 quant-ph arXiv:1610.04298v2We show that it is possible to generate a novel single-photon fringe pattern by using two spatially separated identical bi-photon sources. The fringes are similar to the ones observed in a Michelson interferometer and possess certain remarkable properties with potential applications. A striking feature of the fringes is that although the pattern is obtained by detecting only one photon of each photon pair, the fringes shift due to a change in the optical path traversed by the undetected photon. The fringe shift is characterized by a combination of wavelengths of both photons, which implies that the wavelength of a photon can be measured without detecting it. Furthermore, the visibility of the fringes diminishes as the correlation between the transverse momenta of twin photons decreases: visibility is unity for maximum momentum correlation and zero for no momentum correlation. We also show that the momentum correlation between the two photons of a pair can be determined from the single-photon interference pattern. We thus for the first time propose a method of measuring a two-photon correlation without coincidence or heralded detection.
- Oct 04 2016 quant-ph physics.optics arXiv:1610.00642v3Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are 1) superposition of photon pairs with different origins and 2) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces -- starting only from non-entangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to other quantum entities than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.
- Jul 19 2016 quant-ph physics.optics arXiv:1607.05114v2The identification of orbital angular momentum (OAM) as a fundamental property of a beam of light nearly twenty-five years ago has led to an extensive body of research around this topic. The possibility that single photons can carry OAM has made this degree of freedom an ideal candidate for the investigation of complex quantum phenomena and their applications. Research in this direction has ranged from experiments on complex forms of quantum entanglement to the interaction between light and quantum states of matter. Furthermore, the use of OAM in quantum information has generated a lot of excitement, as it allows for encoding large amounts of information on a single photon. Here we explain the intuition that led to the first quantum experiment with OAM fifteen years ago. We continue by reviewing some key experiments investigating fundamental questions on photonic OAM and the first steps into applying these properties in novel quantum protocols. In the end, we identify several interesting open questions that could form the subject of future investigations with OAM.
- Jul 05 2016 quant-ph arXiv:1607.00922v1Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors (SPM), to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution and highlight OAM as a promising way to increase the information capacity of a single photon.
- Jun 07 2016 physics.optics quant-ph arXiv:1606.01811v1Spatial modes of light can potentially carry a vast amount of information, making them promising candidates for both classical and quantum communication. However, the distribution of such modes over large distances remains difficult. Intermodal coupling complicates their use with common fibers, while free-space transmission is thought to be strongly influenced by atmospheric turbulence. Here we show the transmission of orbital angular momentum modes of light over a distance of 143 kilometers between two Canary Islands, which is 50 times greater than the maximum distance achieved previously. As a demonstration of the transmission quality, we use superpositions of these modes to encode a short message. At the receiver, an artificial neural network is used for distinguishing between the different twisted light superpositions. The algorithm is able to identify different mode superpositions with an accuracy of more than 80% up to the third mode order, and decode the transmitted message with an error rate of 8.33%. Using our data, we estimate that the distribution of orbital angular momentum entanglement over more than 100 kilometers of free space is feasible. Moreover, the quality of our free-space link can be further improved by the use of state-of-the-art adaptive optics systems.
- May 20 2016 quant-ph arXiv:1605.05947v1In addition to being a workhorse for modern quantum technologies, entanglement plays a key role in fundamental tests of quantum mechanics. The entanglement of photons in multiple levels, or dimensions, explores the limits of how large an entangled state can be, while also greatly expanding its applications in quantum information. Here we show how a high-dimensional quantum state of two photons entangled in their orbital angular momentum can be split into two entangled states with a smaller dimensionality structure. Our work demonstrates that entanglement is a quantum property that can be subdivided into spatially separated parts. In addition, our technique has vast potential applications in quantum as well as classical communication systems.
- Dec 10 2015 quant-ph physics.optics arXiv:1512.02696v1The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states.
- Nov 11 2015 quant-ph arXiv:1511.03190v2Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed $3.74 \times 10^{-31}$, corresponding to an 11.5 standard deviation effect.
- Nov 05 2015 physics.optics quant-ph arXiv:1511.01135v1Light beams can carry a discrete, in principle unbounded amount of angular momentum. Examples of such beams, the Laguerre-Gauss modes, are frequently expressed as solutions of the paraxial wave equation. There, they are eigenstates of the orbital angular momentum (OAM) operator. The paraxial solutions predict that beams with large OAM could be used to resolve arbitrarily small distances - a dubious situation. Here we show how to solve that situation by calculating the properties of beams free from the paraxial approximation. We find the surprising result that indeed one can resolve smaller distances with larger OAM, although with decreased visibility. If the visibility is kept constant (for instance at the Rayleigh criterion, the limit where two points are reasonably distinguishable), larger OAM does not provide an advantage. The drop in visibility is due to a field in the direction of propagation, which is neglected within the paraxial limit.
- Oct 15 2015 quant-ph physics.optics arXiv:1510.04192v1Partial polarization is the manifestation of the correlation between two mutually orthogonal transverse field components associated with a light beam. We show both theoretically and experimentally that the origin of this correlation can be purely quantum mechanical. We perform a two-path first-order (single photon) interference experiment and demonstrate that the degree of polarization of the light emerging from the output of the interferometer depends on path distinguishability. We use two independent methods to control the distinguishability of the photon paths. While the distinguishability introduced in one of the methods can be erased by performing a suitable measurement on the superposed beam, the distinguishability introduced in the other method cannot be erased. We show that the beam is partially polarized only when both types of distinguishability exist. Our main result is the dependence of the degree of polarization on the inerasable distinguishability, which cannot be explained by the classical (non-quantum) theory of light.
- Sep 10 2015 quant-ph physics.optics arXiv:1509.02749v2Quantum mechanics predicts a number of at first sight counterintuitive phenomena. It is therefore a question whether our intuition is the best way to find new experiments. Here we report the development of the computer algorithm Melvin which is able to find new experimental implementations for the creation and manipulation of complex quantum states. And indeed, the discovered experiments extensively use unfamiliar and asymmetric techniques which are challenging to understand intuitively. The results range from the first implementation of a high-dimensional Greenberger-Horne-Zeilinger (GHZ) state, to a vast variety of experiments for asymmetrically entangled quantum states -- a feature that can only exist when both the number of involved parties and dimensions is larger than 2. Additionally, new types of high-dimensional transformations are found that perform cyclic operations. Melvin autonomously learns from solutions for simpler systems, which significantly speeds up the discovery rate of more complex experiments. The ability to automate the design of a quantum experiment can be applied to many quantum systems and allows the physical realization of quantum states previously thought of only on paper.
- Sep 10 2015 quant-ph physics.optics arXiv:1509.02561v1Entanglement lies at the heart of quantum mechanics $-$ as a fundamental tool for testing its deep rift with classical physics, while also providing a key resource for quantum technologies such as quantum computation and cryptography. In 1987 Greenberger, Horne, and Zeilinger realized that the entanglement of more than two particles implies a non-statistical conflict between local realism and quantum mechanics. The resulting predictions were experimentally confirmed by entangling three photons in their polarization. Experimental efforts since have singularly focused on increasing the number of particles entangled, while remaining in a two-dimensional space for each particle. Here we show the experimental generation of the first multi-photon entangled state where both $-$ the number of particles and the number of dimensions $-$ are greater than two. Interestingly, our state exhibits an asymmetric entanglement structure that is only possible when one considers multi-particle entangled states in high dimensions. Two photons in our state reside in a three-dimensional space, while the third lives in two dimensions. Our method relies on combining two pairs of photons, high-dimensionally entangled in their orbital angular momentum, in such a way that information about their origin is erased. Additionally, we show how this state enables a new type of "layered" quantum cryptographic protocol where two parties share an additional layer of secure information over that already shared by all three parties. In addition to their application in novel quantum communication protocols, such asymmetric entangled states serve as a manifestation of the complex dance of correlations that can exist within quantum mechanics.
- Jul 24 2015 quant-ph arXiv:1507.06551v1Photons with a twisted phase front can carry a discrete, in principle unbounded amount of orbital angular momentum (OAM). The large state space allows for complex types of entanglement, interesting both for quantum communication and for fundamental tests of quantum theory. However, the distribution of such entangled states over large distances was thought to be infeasible due to influence of atmospheric turbulence, indicating a serious limitation on their usefulness. Here we show that it is possible to distribute quantum entanglement encoded in OAM over a turbulent intra-city link of 3 kilometers. We confirm quantum entanglement of the first two higher-order levels (with OAM=$\pm 1 \hbar$ and $\pm 2 \hbar$). They correspond to four new quantum channels orthogonal to all that have been used in long-distance quantum experiments so far. Therefore a promising application would be quantum communication with a large alphabet. We also demonstrate that our link allows access to up to 11 quantum channels of OAM. The restrictive factors towards higher numbers are technical limitations that can be circumvented with readily available technologies.
- Apr 03 2015 quant-ph arXiv:1504.00402v1A novel quantum imaging technique has recently been demonstrated in an experiment, where the photon used for illuminating an object is not detected; the image is obtained by interfering two beams, none of which ever interacts with the object. Here we present a detailed theoretical analysis of the experiment. We show that the object information is present only in the interference term and not in the individual intensities of the interfering beams. We also theoretically establish that the magnification of the imaging system depends on two wavelengths: the average wavelength of the photon that illuminates the object and the average wavelength of the photon that is detected. Our analysis affirms that the imaging process is based on the principle that quantum interference occurs when interferometric path information is unavailable.
- Feb 24 2015 quant-ph arXiv:1502.06504v2Integrated optics allow the generation and control of increasingly complex photonic states on chip based architectures. Here, we implement two entangled qutrits - a 9-dimensional quantum system - and demonstrate an exceptionally high degree of experimental control. The approach which is conceptually different to common bulk optical implementations is heavily based on methods of integrated in-fiber and on-chip technologies and further motivated by methods commonly used in today's telecommunication industry. The system is composed of an in-fiber source creating entangled qutrit states of any amplitude and phase and an on-chip integrated general Multiport enabling the realization of any desired local unitary transformation within the two qutrit 9-dimensional Hilbert space. The complete design is readily extendible towards higher-dimensions with moderate increase in complexity. Ultimately, our scheme allows for complete on-chip integration. We demonstrate the flexibility and generality of our system by realizing a complete characterization of the two qutrit space of higher-order Einstein-Podolsky-Rosen correlations.
- Nov 03 2014 quant-ph physics.optics arXiv:1410.8722v1There is recent interest in the use of light beams carrying orbital angular momentum (OAM) for creating multiple channels within free-space optical communication systems. One limiting issue is that, for a given beam size at the transmitter, the beam divergence angle increases with increasing OAM, thus requiring a larger aperture at the receiving optical system if the efficiency of detection is to be maintained. Confusion exists as to whether this divergence scales linarly with, or with the square root of, the beam's OAM. We clarify how both these scaling laws are valid, depending upon whether it is the radius of the Gaussian beam waist or the rms intensity which is kept constant while varying the OAM.
- Jul 11 2014 quant-ph arXiv:1407.2930v3The wave-particle duality dates back to Einstein's explanation of the photoelectric effect through quanta of light and de Broglie's hypothesis of matter waves. Quantum mechanics uses an abstract description for the behavior of physical systems such as photons, electrons, or atoms. Whether quantum predictions for single systems in an interferometric experiment allow an intuitive understanding in terms of the particle or wave picture, depends on the specific configuration which is being used. In principle, this leaves open the possibility that quantum systems always either behave definitely as a particle or definitely as a wave in every experimental run by a priori adapting to the specific experimental situation. This is precisely what is tried to be excluded by delayed-choice experiments, in which the observer chooses to reveal the particle or wave character -- or even a continuous transformation between the two -- of a quantum system at a late stage of the experiment. We review the history of delayed-choice gedanken experiments, which can be traced back to the early days of quantum mechanics. Then we discuss their experimental realizations, in particular Wheeler's delayed choice in interferometric setups as well as delayed-choice quantum erasure and entanglement swapping. The latter is particularly interesting, because it elevates the wave-particle duality of a single quantum system to an entanglement-separability duality of multiple systems.
- We report on the realization of Bose-Einstein condensation of metastable helium-4. After exciting helium to its metastable state in a novel pulse-tube cryostat source, the atomic beam is collimated and slowed. We then trap several 10^8 atoms in a magneto-optical trap. For subsequent evaporative cooling, the atoms are transferred into a magnetic trap. Degeneracy is achieved with typically a few 10^6 atoms. For detection of atomic correlations with high resolution, an ultrafast delay-line detector has been installed. Consisting of four quadrants with independent readout electronics that allow for true simultaneous detection of atoms, the detector is especially suited for quantum correlation experiments that require the detection of correlated subsystems. We expect our setup to allow for the direct demonstration of momentum entanglement in a scenario equivalent to the Einstein-Podolsky-Rosen gedanken experiment. This will pave the way to matter-wave experiments exploiting the peculiarities of quantum correlations.
- Apr 29 2014 quant-ph arXiv:1404.6914v1We demonstrate a novel scheme for femto-second pulsed spontaneous parametric down-conversion in periodically poled KTP crystals. Our scheme is based on a crossed crystal configuration with collinear quasi-phase-matching. The non-degenerate photon pairs are split in a fiber-based wavelength division multiplexer. The source is easier to align than common pulsed sources based on bulk BBO crystals and exhibits high-quality polarization entanglement as well as non-classical interference capabilities. Hence, we expect this source to be a well-suited candidate for multi-photon state generation e.g. for linear optical quantum computation and quantum communication networks.
- Mar 04 2014 quant-ph physics.optics arXiv:1403.0009v4As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for quantum states. This calls for more advanced techniques in a future global quantum network, e.g. for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e. entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 standard deviations beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Since our results already allow for efficient implementation of entanglement purification, we anticipate our assay to lay the ground for a fully-fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.
- Feb 12 2014 quant-ph physics.optics arXiv:1402.2423v3Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the setup as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum (OAM) possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a non-linear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the OAM degree of freedom. Thus our results show a novel, flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.
- Feb 12 2014 physics.optics quant-ph arXiv:1402.2602v2The transverse spatial modes of light offer a large state-space with interesting physical properties. For exploiting it in future long-distance experiments, spatial modes will have to be transmitted over turbulent free-space links. Numerous recent lab-scale experiments have found significant degradation in the mode quality after transmission through simulated turbulence and consecutive coherent detection. Here we experimentally analyze the transmission of one prominent class of spatial modes, the orbital-angular momentum (OAM) modes, through 3 km of strong turbulence over the city of Vienna. Instead of performing a coherent phase-dependent measurement, we employ an incoherent detection scheme which relies on the unambiguous intensity patterns of the different spatial modes. We use a pattern recognition algorithm (an artificial neural network) to identify the characteristic mode pattern displayed on a screen at the receiver. We were able to distinguish between 16 different OAM mode superpositions with only ~1.7% error, and use them to encode and transmit small grey-scale images. Moreover, we found that the relative phase of the superposition modes is not affected by the atmosphere, establishing the feasibility for performing long-distance quantum experiments with the OAM of photons. Our detection method works for other classes of spatial modes with unambiguous intensity patterns as well, and can further be improved by modern techniques of pattern recognition.
- Jan 20 2014 quant-ph physics.optics arXiv:1401.4318v2Indistinguishable quantum states interfere, but the mere possibility of obtaining information that could distinguish between overlapping states inhibits quantum interference. Quantum interference imaging can outperform classical imaging or even have entirely new features. Here, we introduce and experimentally demonstrate a quantum imaging concept that relies on the indistinguishability of the possible sources of a photon that remains undetected. Our experiment uses pair creation in two separate down-conversion crystals. While the photons passing through the object are never detected, we obtain images exclusively with the sister photons that do not interact with the object. Therefore the object to be imaged can be either opaque or invisible to the detected photons. Moreover, our technique allows the probe wavelength to be chosen in a range for which suitable sources and/or detectors are unavailable. Our experiment is a prototype in quantum information where knowledge can be extracted by and about a photon that is never detected.
- Dec 05 2013 quant-ph physics.optics arXiv:1312.1306v1We report the efficient creation and detection of hybrid entanglement between one photon's polarization and another photon's complex transverse polarization pattern. The polarization measurement of the first photon triggers a polarization sensitive imaging of its partner photon, the vector photon, using a single-photon sensitive camera. Thereby, we reconstruct tomographically the vector photon's complex polarization patterns dependent on the type of polarization measurement performed on its partner. We visualize the varying strengths of polarization entanglement for different transverse regions and demonstrate a novel feature: each vector photon can be both entangled and not entangled in polarization with its partner photon. We give an intuitive, information theoretical explanation for our results.
- Jul 25 2013 quant-ph arXiv:1307.6475v1A recent experiment presented, for photons, the first violation of a Bell inequality closing the fair-sampling loophole, i.e., without having to assume that the sample of measured photons fairly represents the entire ensemble. In this note, we discuss a detailed quantum mechanical model for the experimental data. Within experimental error the experiment agrees with quantum mechanical prediction. We also discuss the effects of drifting laser intensity and show that it could not have mimicked a violation of the Bell inequality. Therefore, the experiment was immune to the "production-rate loophole."
- Jul 05 2013 quant-ph physics.hist-ph arXiv:1307.1310v1The twentieth century saw two fundamental revolutions in physics -- relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality, or merely change belief? Must relativity and quantum theory just co-exist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment.
- Jun 28 2013 quant-ph arXiv:1306.6517v1The orbital angular momentum quantum number of Laguerre-Gauss beams has received an explosively increasing amount of attention over the past twenty years. However, often overlooked is the so-called radial number of these beams. We present a derivation of the differential operator formalism of this "forgotten" quantum number. We then draw some connections between this new formalism and the effect the radial number has on beam stability with possible application to quantum communication. We also briefly outline how the radial number is tied to other physical aspects of the beam (such as the Gouy phase, and radial confinement). These do not necessarily constitute finished results, but are instead meant to stimulate discussion of this interesting and often overlooked physical parameter.
- Jun 04 2013 quant-ph physics.optics arXiv:1306.0096v2Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100x100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising.
- May 24 2013 quant-ph arXiv:1305.5529v1In a recent paper [arXiv:1301.2887] Ahrens et al. claim that our "(...) experiment on qutrits does not test Klyachko et al.'s inequality, but an inequality with extra correlations" and that the "(...) experiment cannot be considered a proper test of a noncontextuality inequality, since the same observable is measured with different setups in different contexts". We disagree with these claims. In this note we briefly re-state how our test of the non-contextuality inequality was constructed. We explain how we keep the context of measurements when switching between different terms of the tested inequality, and we argue that we did in fact test the Klyachko, Can, Binicioglu and Shumovsky inequality. In doing so, we also clarify why our experiment is indeed a proper test of noncontextual realism.
- Jan 14 2013 quant-ph physics.hist-ph arXiv:1301.2515v1This is an article for a special edition of "European Review" with a focus on the topic "Causality".
- Jan 08 2013 quant-ph physics.hist-ph arXiv:1301.1069v1Foundational investigations in quantum mechanics, both experimental and theoretical, gave birth to the field of quantum information science. Nevertheless, the foundations of quantum mechanics themselves remain hotly debated in the scientific community, and no consensus on essential questions has been reached. Here, we present the results of a poll carried out among 33 participants of a conference on the foundations of quantum mechanics. The participants completed a questionnaire containing 16 multiple-choice questions probing opinions on quantum-foundational issues. Participants included physicists, philosophers, and mathematicians. We describe our findings, identify commonly held views, and determine strong, medium, and weak correlations between the answers. Our study provides a unique snapshot of current views in the field of quantum foundations, as well as an analysis of the relationships between these views.
- Dec 21 2012 quant-ph physics.optics arXiv:1212.5058v2Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.
- Dec 04 2012 quant-ph arXiv:1212.0533v2The violation of a Bell inequality is an experimental observation that forces one to abandon a local realistic worldview, namely, one in which physical properties are (probabilistically) defined prior to and independent of measurement and no physical influence can propagate faster than the speed of light. All such experimental violations require additional assumptions depending on their specific construction making them vulnerable to so-called "loopholes." Here, we use photons and high-efficiency superconducting detectors to violate a Bell inequality closing the fair-sampling loophole, i.e. without assuming that the sample of measured photons accurately represents the entire ensemble. Additionally, we demonstrate that our setup can realize one-sided device-independent quantum key distribution on both sides. This represents a significant advance relevant to both fundamental tests and promising quantum applications.
- Nov 22 2012 quant-ph arXiv:1211.5059v2Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83 %. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.
- Oct 05 2012 quant-ph physics.optics arXiv:1210.1282v1We present a high-fidelity quantum teleportation experiment over a high-loss free-space channel between two laboratories. We teleported six states of three mutually unbiased bases and obtained an average state fidelity of 0.82(1), well beyond the classical limit of 2/3. With the obtained data, we tomographically reconstructed the process matrices of quantum teleportation. The free-space channel attenuation of 31 dB corresponds to the estimated attenuation regime for a down-link from a low-earth-orbit satellite to a ground station. We also discussed various important technical issues for future experiments, including the dark counts of single-photon detectors, coincidence-window width etc. Our experiment tested the limit of performing quantum teleportation with state-of-the-art resources. It is an important step towards future satellite-based quantum teleportation and paves the way for establishing a worldwide quantum communication network.
- We demonstrate how adversaries with unbounded computing resources can break Quantum Key Distribution (QKD) protocols which employ a particular message authentication code suggested previously. This authentication code, featuring low key consumption, is not Information-Theoretically Secure (ITS) since for each message the eavesdropper has intercepted she is able to send a different message from a set of messages that she can calculate by finding collisions of a cryptographic hash function. However, when this authentication code was introduced it was shown to prevent straightforward Man-In-The-Middle (MITM) attacks against QKD protocols. In this paper, we prove that the set of messages that collide with any given message under this authentication code contains with high probability a message that has small Hamming distance to any other given message. Based on this fact we present extended MITM attacks against different versions of BB84 QKD protocols using the addressed authentication code; for three protocols we describe every single action taken by the adversary. For all protocols the adversary can obtain complete knowledge of the key, and for most protocols her success probability in doing so approaches unity. Since the attacks work against all authentication methods which allow to calculate colliding messages, the underlying building blocks of the presented attacks expose the potential pitfalls arising as a consequence of non-ITS authentication in QKD-postprocessing. We propose countermeasures, increasing the eavesdroppers demand for computational power, and also prove necessary and sufficient conditions for upgrading the discussed authentication code to the ITS level.
- Aug 10 2012 quant-ph physics.optics arXiv:1208.1865v1We present a quantum mechanical analysis of the orbital angular momentum of a class of recently discovered elliptically-symmetric stable light fields --- the so-called Ince-Gauss modes. We study, in a fully quantum formalism, how the orbital angular momentum of these beams varies with their ellipticity and discover several compelling features, including: non-monotonic behavior, stable beams with real continuous (non-integer) orbital angular momenta, and orthogonal modes with the same orbital angular momenta. We explore, and explain in detail, the reasons for this behavior. These features may have application to quantum key distribution, atom trapping, and quantum informatics in general --- as the ellipticity opens up a new way of navigating the photonic Hilbert space.
- Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM) and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrary high difference in the quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement up to 600 quanta difference in the orbital angular momentum. The only restrictive factors towards higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of the angular resolution in remote sensing.
- Jun 29 2012 quant-ph physics.optics arXiv:1206.6578v2The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information, a particle feature, of one quantum system and thus observe its wave feature via interference or not by performing a suitable measurement on a distant quantum system entangled with it. In all experiments performed to date, this choice took place either in the past or, in some delayed-choice arrangements, in the future of the interference. Thus in principle, physical communications between choice and interference were not excluded. Here we report a quantum eraser experiment, in which by enforcing Einstein locality no such communication is possible. This is achieved by independent active choices, which are space-like separated from the interference. Our setup employs hybrid path-polarization entangled photon pairs which are distributed over an optical fiber link of 55 m in one experiment, or over a free-space link of 144 km in another. No naive realistic picture is compatible with our results because whether a quantum could be seen as showing particle- or wave-like behavior would depend on a causally disconnected choice. It is therefore suggestive to abandon such pictures altogether.
- Jun 12 2012 quant-ph arXiv:1206.2141v2We propose an experiment which can demonstrate quantum correlations in a physical scenario as discussed in the seminal work of Einstein, Podolsky and Rosen. Momentum-entangled massive particles are produced via the four-wave mixing process of two colliding Bose-Einstein condensates. The particles' quantum correlations can be shown in a double double-slit experiment or via ghost interference.
- May 18 2012 quant-ph physics.optics arXiv:1205.3909v1Quantum teleportation [1] is a quintessential prerequisite of many quantum information processing protocols [2-4]. By using quantum teleportation, one can circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum states to a party whose location is even unknown over arbitrary distances. Ever since the first experimental demonstrations of quantum teleportation of independent qubits [6] and of squeezed states [7], researchers have progressively extended the communication distance in teleportation, usually without active feed-forward of the classical Bell-state measurement result which is an essential ingredient in future applications such as communication between quantum computers. Here we report the first long-distance quantum teleportation experiment with active feed-forward in real time. The experiment employed two optical links, quantum and classical, over 143 km free space between the two Canary Islands of La Palma and Tenerife. To achieve this, the experiment had to employ novel techniques such as a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors, and entanglement-assisted clock synchronization. The average teleported state fidelity was well beyond the classical limit of 2/3. Furthermore, we confirmed the quality of the quantum teleportation procedure (without feed-forward) by complete quantum process tomography. Our experiment confirms the maturity and applicability of the involved technologies in real-world scenarios, and is a milestone towards future satellite-based quantum teleportation.
- May 15 2012 quant-ph physics.optics arXiv:1205.2801v1Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. The available photonic quantum technology is reaching the state where significant advantages arise for the quantum simulation of interesting questions in Heisenberg spin systems. Here we experimentally simulate such spin systems with single photons and linear optics. The effective Heisenberg-type interactions among individual single photons are realized by quantum interference at the tunable direction coupler followed by the measurement process. The effective interactions are characterized by comparing the entanglement dynamics using pairwise concurrence of a four-photon quantum system. We further show that photonic quantum simulations of generalized Heisenberg interactions on a four-site square lattice and a six-site checkerboard lattice are in reach of current technology.
- May 14 2012 quant-ph physics.optics arXiv:1205.2514v2Photons with complex spatial mode structures open up possibilities for new fundamental high-dimensional quantum experiments and for novel quantum information tasks. Here we show for the first time entanglement of photons with complex vortex and singularity patterns called Ince-Gauss modes. In these modes, the position and number of singularities vary depending on the mode parameters. We verify 2-dimensional and 3-dimensional entanglement of Ince-Gauss modes. By measuring one photon and thereby defining its singularity pattern, we non-locally steer the singularity structure of its entangled partner, while the initial singularity structure of the photons is undefined. In addition we measure an Ince-Gauss specific quantum-correlation function with possible use in future quantum communication protocols.
- May 01 2012 quant-ph physics.optics arXiv:1204.6616v1Integrated photonic circuits offer the possibility for complex quantum optical experiments in higher-dimensional photonic systems. However, the advantages of integration and scalability can only be fully utilized with the availability of a source for higher-dimensional entangled photons. Here, a novel fiber integrated source for path-entangled photons in the telecom band at 1.55\mum using only standard fiber technology is presented. Due to the special design the source shows good scalability towards higher-dimensional entangled photonic states (quNits), while path entanglement offers direct compatibility with on-chip path encoding. We present an experimental realization of a path-entangled two-qubit source. A very high quality of entanglement is verified by various measurements, i.a. a tomographic state reconstruction is performed leading to a background corrected fidelity of (99.45+-0.06)%. Moreover, we describe an easy method for extending our source to arbitrarily high dimensions.
- Mar 23 2012 quant-ph arXiv:1203.4834v2Motivated by the question, which kind of physical interactions and processes are needed for the production of quantum entanglement, Peres has put forward the radical idea of delayed-choice entanglement swapping. There, entanglement can be "produced a posteriori, after the entangled particles have been measured and may no longer exist". In this work we report the first realization of Peres' gedanken experiment. Using four photons, we can actively delay the choice of measurement-implemented via a high-speed tunable bipartite state analyzer and a quantum random number generator-on two of the photons into the time-like future of the registration of the other two photons. This effectively projects the two already registered photons onto one definite of two mutually exclusive quantum states in which either the photons are entangled (quantum correlations) or separable (classical correlations). This can also be viewed as "quantum steering into the past".
- Mar 09 2012 quant-ph arXiv:1203.1629v2Quantum entanglement is widely recognized as one of the key resources for the advantages of quantum information processing, including universal quantum computation, reduction of communication complexity or secret key distribution. However, computational models have been discovered, which consume very little or no entanglement and still can efficiently solve certain problems thought to be classically intractable. The existence of these models suggests that separable or weakly entangled states could be extremely useful tools for quantum information processing as they are much easier to prepare and control even in dissipative environments. It has been proposed that a requirement for useful quantum states is the generation of so-called quantum discord, a measure of non-classical correlations that includes entanglement as a subset. Although a link between quantum discord and few quantum information tasks has been studied, its role in computation speed-up is still open and its operational interpretation remains restricted to only few somewhat contrived situations. Here we show that quantum discord is the optimal resource for the remote quantum state preparation, a variant of the quantum teleportation protocol. Using photonic quantum systems, we explicitly show that the geometric measure of quantum discord is related to the fidelity of this task, which provides an operational meaning. Moreover, we demonstrate that separable states with non-zero quantum discord can outperform entangled states. Therefore, the role of quantum discord might provide fundamental insights for resource-efficient quantum information processing.
- Nov 04 2011 quant-ph arXiv:1111.0760v3Tests of the predictions of quantum mechanics for entangled systems have provided increasing evidence against local realistic theories. However, there still remains the crucial challenge of simultaneously closing all major loopholes - the locality, freedom-of-choice, and detection loopholes - in a single experiment. An important sub-class of local realistic theories can be tested with the concept of "steering". The term steering was introduced by Schrödinger in 1935 for the fact that entanglement would seem to allow an experimenter to remotely steer the state of a distant system as in the Einstein-Podolsky-Rosen (EPR) argument. Einstein called this "spooky action at a distance". EPR-Steering has recently been rigorously formulated as a quantum information task opening it up to new experimental tests. Here, we present the first loophole-free demonstration of EPR-steering by violating three-setting quadratic steering inequality, tested with polarization entangled photons shared between two distant laboratories. Our experiment demonstrates this effect while simultaneously closing all loopholes: both the locality loophole and a specific form of the freedom-of-choice loophole are closed by having a large separation of the parties and using fast quantum random number generators, and the fair-sampling loophole is closed by having high overall detection efficiency. Thereby, we exclude - for the first time loophole-free - an important class of local realistic theories considered by EPR. As well as its foundational importance, loop-hole-free steering also allows the distribution of quantum entanglement secure from an untrusted party.
- Oct 07 2011 quant-ph arXiv:1110.1381v1Quantum computers, besides offering substantial computational speedups, are also expected to provide the possibility of preserving the privacy of a computation. Here we show the first such experimental demonstration of blind quantum computation where the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. We demonstrate various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover algorithms. Remarkably, the client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for future unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.
- We propose a feasible laboratory interferometry experiment with matter waves in a gravitational potential caused by a pair of artificial field-generating masses. It will demonstrate that the presence of these masses (and, for moving atoms, time dilation) induces a phase shift, even if it does not cause any classical force. The phase shift is identical to that produced by the gravitational redshift (or time dilation) of clocks ticking at the atom's Compton frequency. In analogy to the Aharonov-Bohm effect in electromagnetism, the quantum mechanical phase is a function of the gravitational potential and not the classical forces.
- Sep 09 2011 quant-ph physics.optics arXiv:1109.1762v2We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.
- Jun 23 2011 quant-ph arXiv:1106.4481v1Quantum theory demands that, in contrast to classical physics, not all properties can be simultaneously well defined. The Heisenberg Uncertainty Principle is a manifestation of this fact. Another important corollary arises that there can be no joint probability distribution describing the outcomes of all possible measurements, allowing a quantum system to be classically understood. We provide the first experimental evidence that even for a single three-state system, a qutrit, no such classical model can exist that correctly describes the results of a simple set of pairwise compatible measurements. Not only is a single qutrit the simplest system in which such a contradiction is possible, but, even more importantly, the contradiction cannot result from entanglement, because such a system is indivisible, and it does not even allow the concept of entanglement between subsystems.
- Jun 13 2011 quant-ph arXiv:1106.1992v1Single photons provide excellent quantum information carriers, but current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed single photons, while linear-optics gates are inherently probabilistic. Here, we introduce a deterministic scheme for photonic quantum information. Our single, versatile process---coherent photon conversion---provides a full suite of photonic quantum processing tools, from creating high-quality heralded single- and multiphoton states free of higher-order imperfections to implementing deterministic multiqubit entanglement gates and high-efficiency detection. It fulfils all requirements for a scalable photonic quantum computing architecture. Using photonic crystal fibres, we experimentally demonstrate a four-colour nonlinear process usable for coherent photon conversion and show that current technology provides a feasible path towards deterministic operation. Our scheme, based on interacting bosonic fields, is not restricted to optical systems, but could also be implemented in optomechanical, electromechanical and superconducting systems which exhibit extremely strong intrinsic nonlinearities.