results for au:Yard_J in:cs

- Exact synthesis is a tool used in algorithms for approximating an arbitrary qubit unitary with a sequence of quantum gates from some finite set. These approximation algorithms find asymptotically optimal approximations in probabilistic polynomial time, in some cases even finding the optimal solution in probabilistic polynomial time given access to an oracle for factoring integers. In this paper, we present a common mathematical structure underlying all results related to the exact synthesis of qubit unitaries known to date, including Clifford+T, Clifford-cyclotomic and V-basis gate sets, as well as gates sets induced by the braiding of Fibonacci anyons in topological quantum computing. The framework presented here also provides a means to answer questions related to the exact synthesis of unitaries for wide classes of other gate sets, such as Clifford+T+V and SU(2) level k anyons.
- As with classical information, error-correcting codes enable reliable transmission of quantum information through noisy or lossy channels. In contrast to the classical theory, imperfect quantum channels exhibit a strong kind of synergy: there exist pairs of discrete memoryless quantum channels, each of zero quantum capacity, which acquire positive quantum capacity when used together. Here we show that this "superactivation" phenomenon also occurs in the more realistic setting of optical channels with attenuation and Gaussian noise. This paves the way for its experimental realization and application in real-world communications systems.
- We present a quasipolynomial-time algorithm for solving the weak membership problem for the convex set of separable, i.e. non-entangled, bipartite density matrices. The algorithm decides whether a density matrix is separable or whether it is eps-away from the set of the separable states in time exp(O(eps^-2 log |A| log |B|)), where |A| and |B| are the local dimensions, and the distance is measured with either the Euclidean norm, or with the so-called LOCC norm. The latter is an operationally motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by quantum local operations and classical communication (LOCC) between the parties. We also obtain improved algorithms for optimizing over the set of separable states and for computing the ground-state energy of mean-field Hamiltonians. The techniques we develop are also applied to quantum Merlin-Arthur games, where we show that multiple provers are not more powerful than a single prover when the verifier is restricted to LOCC protocols, or when the verification procedure is formed by a measurement of small Euclidean norm. This answers a question posed by Aaronson et al (Theory of Computing 5, 1, 2009) and provides two new characterizations of the complexity class QMA, a quantum analog of NP. Our algorithm uses semidefinite programming to search for a symmetric extension, as first proposed by Doherty, Parrilo and Spedialieri (Phys. Rev. A, 69, 022308, 2004). The bound on the runtime follows from an improved de Finetti-type bound quantifying the monogamy of quantum entanglement, proved in (arXiv:1010.1750). This result, in turn, follows from a new lower bound on the quantum conditional mutual information and the entanglement measure squashed entanglement.
- We give a short proof that the coherent information is an achievable rate for the transmission of quantum information through a noisy quantum channel. Our method is to produce random codes by performing a unitarily covariant projective measurement on a typical subspace of a tensor power state. We show that, provided the rank of each measurement operator is sufficiently small, the transmitted data will with high probability be decoupled from the channel's environment. We also show that our construction leads to random codes whose average input is close to a product state and outline a modification yielding unitarily invariant ensembles of maximally entangled codes.
- We consider quantum channels with one sender and two receivers, used in several different ways for the simultaneous transmission of independent messages. We begin by extending the technique of superposition coding to quantum channels with a classical input to give a general achievable region. We also give outer bounds to the capacity regions for various special cases from the classical literature and prove that superposition coding is optimal for a class of channels. We then consider extensions of superposition coding for channels with a quantum input, where some of the messages transmitted are quantum instead of classical, in the sense that the parties establish bipartite or tripartite GHZ entanglement. We conclude by using state merging to give achievable rates for establishing bipartite entanglement between different pairs of parties with the assistance of free classical communication.
- We consider quantum channels with two senders and one receiver. For an arbitrary such channel, we give multi-letter characterizations of two different two-dimensional capacity regions. The first region characterizes the rates at which it is possible for one sender to send classical information while the other sends quantum information. The second region gives the rates at which each sender can send quantum information. We give an example of a channel for which each region has a single-letter description, concluding with a characterization of the rates at which each user can simultaneously send classical and quantum information.