results for au:Wossnig_L in:quant-ph

- Simulating the time-evolution of quantum mechanical systems is BQP-hard and expected to be one of the foremost applications of quantum computers. We consider the approximation of Hamiltonian dynamics using subsampling methods from randomized numerical linear algebra. We propose conditions for the efficient approximation of state vectors evolving under a given Hamiltonian. As an immediate application, we show that sample based quantum simulation, a type of evolution where the Hamiltonian is a density matrix, can be efficiently classically simulated under specific structural conditions. Our main technical contribution is a randomized algorithm for approximating Hermitian matrix exponentials. The proof leverages the Nyström method to obtain low-rank approximations of the Hamiltonian. We envisage that techniques from randomized linear algebra will bring further insights into the power of quantum computation.
- We present a quantum algorithm for simulating the dynamics of Hamiltonians that are not necessarily sparse. Our algorithm is based on the assumption that the entries of the Hamiltonian are stored in a data structure that allows for the efficient preparation of states that encode the rows of the Hamiltonian. We use a linear combination of quantum walks to achieve a poly-logarithmic dependence on the precision. The time complexity measured in terms of circuit depth of our algorithm is $O(t\sqrt{N}\lVert H \rVert \text{polylog}(N, t\lVert H \rVert, 1/\epsilon))$, where $t$ is the evolution time, $N$ is the dimension of the system, and $\epsilon$ is the error in the final state, which we call precision. Our algorithm can directly be applied as a subroutine for unitary Hamiltonians and solving linear systems, achieving a $\widetilde{O}(\sqrt{N})$ dependence for both applications.
- The Harrow-Hassidim-Lloyd (HHL) quantum algorithm for sampling from the solution of a linear system provides an exponential speed-up over its classical counterpart. The problem of solving a system of linear equations has a wide scope of applications, and thus HHL constitutes an important algorithmic primitive. In these notes, we present the HHL algorithm and its improved versions in detail, including explanations of the constituent sub- routines. More specifically, we discuss various quantum subroutines such as quantum phase estimation and amplitude amplification, as well as the important question of loading data into a quantum computer, via quantum RAM. The improvements to the original algorithm exploit variable-time amplitude amplification as well as a method for implementing linear combinations of unitary operations (LCUs) based on a decomposition of the operators using Fourier and Chebyshev series. Finally, we discuss a linear solver based on the quantum singular value estimation (QSVE) subroutine.
- Oct 20 2017 quant-ph arXiv:1710.07063v1We develop a quantum-classical hybrid algorithm for function optimization that is particularly useful in the training of neural networks since it makes use of particular aspects of high-dimensional energy landscapes. Due to a recent formulation of semi-supervised learning as an optimization problem, the algorithm can further be used to find the optimal model parameters for deep generative models. In particular, we present a truncated saddle-free Newton's method based on recent insight from optimization, analysis of deep neural networks and random matrix theory. By combining these with the specific quantum subroutines we are able to exhaust quantum computing in order to arrive at a new quantum-classical hybrid algorithm design. Our algorithm is expected to perform at least as well as existing classical algorithms while achieving a polynomial speedup. The speedup is limited by the required classical read-out. Omitting this requirement can in theory lead to an exponential speedup.
- Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.
- Apr 21 2017 quant-ph arXiv:1704.06174v2Solving linear systems of equations is a frequently encountered problem in machine learning and optimisation. Given a matrix $A$ and a vector $\mathbf b$ the task is to find the vector $\mathbf x$ such that $A \mathbf x = \mathbf b$. We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of $\mathcal{O}(\kappa^2 \|A\|_F \text{polylog}(n)/\epsilon)$, where $n\times n$ is the dimensionality of $A$ with Frobenius norm $\|A\|_F$, $\kappa$ denotes the condition number of $A$, and $\epsilon$ is the desired precision parameter. When applied to a dense matrix with spectral norm bounded by a constant, the runtime of the proposed algorithm is bounded by $\mathcal{O}(\kappa^2\sqrt{n} \text{polylog}(n)/\epsilon)$, which is a quadratic improvement over known quantum linear system algorithms. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows and row Frobenius norms of $A$.
- Dec 07 2016 quant-ph arXiv:1612.01789v3Optimization problems in disciplines such as machine learning are commonly solved with iterative methods. Gradient descent algorithms find local minima by moving along the direction of steepest descent while Newton's method takes into account curvature information and thereby often improves convergence. Here, we develop quantum versions of these iterative optimization algorithms and apply them to polynomial optimization with a unit norm constraint. In each step, multiple copies of the current candidate are used to improve the candidate using quantum phase estimation, an adapted quantum principal component analysis scheme, as well as quantum matrix multiplications and inversions. The required operations perform polylogarithmically in the dimension of the solution vector and exponentially in the number of iterations. Therefore, the quantum algorithm can be beneficial for high-dimensional problems where a small number of iterations is sufficient.