results for au:Wossnig_L in:quant-ph

- Apr 21 2017 quant-ph arXiv:1704.06174v1Solving linear systems of equations is a frequently encountered problem in machine learning and optimisation. Given a matrix $A$ and a vector $\mathbf b$ the task is to find the vector $\mathbf x$ such that $A \mathbf x = \mathbf b$. We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of $\mathcal{O}(\kappa^2 \|A\|_F \text{polylog}(n)/\epsilon)$, where $n\times n$ is the dimensionality of $A$ with Frobenius norm $\|A\|_F$, $\kappa$ denotes the condition number of $A$, and $\epsilon$ is the desired precision parameter. When applied to a dense matrix with spectral norm bounded by a constant, the runtime of the proposed algorithm is bounded by $\mathcal{O}(\kappa^2\sqrt{n} \text{polylog}(n)/\epsilon)$, which is a quadratic improvement over known quantum linear system algorithms. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows and row Frobenius norms of $A$.