results for au:Verma_M in:hep-th

- Mar 21 2017 hep-th arXiv:1703.06410v1We review recent developments in the construction of heterotic and type II string field theories and their various applications. These include systematic procedures for determining the shifts in the vacuum expectation values of fields under quantum corrections, computing renormalized masses and S-matrix of the theory around the shifted vacuum and a proof of unitarity of the S-matrix. The S-matrix computed this way is free from all divergences when there are more than 4 non-compact space-time dimensions, but suffers from the usual infrared divergences when the number of non-compact space-time dimensions is 4 or less.
- Mar 20 2017 hep-th arXiv:1703.06132v2We explore the connection between the operator product expansion (OPE) in the boundary and worldsheet conformal field theories in the context of AdS$_{d+1}$/CFT$_d$ correspondence. Considering single trace scalar operators in the boundary theory and using the saddle point analysis of the worldsheet OPE [1], we derive an explicit relation between OPE coefficients in the boundary and worldsheet theories for the contribution of single trace spin $\ell$ operators to the OPE. We also consider external vector operators and obtain the relation between OPE coefficients for the exchange of single trace scalar operators in the OPE. We revisit the relationship between the bulk cubic couplings in the Supergravity approximation and the OPE coefficients in the dual boundary theory. Our results match with the known examples from the case of AdS$_3$/CFT$_2$. For the operators whose two and three point correlators enjoy a non renormalization theorem, this gives a set of three way relations between the bulk cubic couplings in supergravity and the OPE coefficients in the boundary and worldsheet theories.
- Jul 26 2016 hep-th arXiv:1607.07334v3We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.
- In a metastable de Sitter space any object has a finite life expectancy beyond which it undergoes vacuum decay. However, by spreading into different parts of the universe which will fall out of causal contact of each other in future, a civilization can increase its collective life expectancy, defined as the average time after which the last settlement disappears due to vacuum decay. We study in detail the collective life expectancy of two comoving objects in de Sitter space as a function of the initial separation, the horizon radius and the vacuum decay rate. We find that even with a modest initial separation, the collective life expectancy can reach a value close to the maximum possible value of 1.5 times that of the individual object if the decay rate is less than 1% of the expansion rate. Our analysis can be generalized to any number of objects, general trajectories not necessarily at rest in the comoving coordinates and general FRW space-time. As part of our analysis we find that in the current state of the universe dominated by matter and cosmological constant, the vacuum decay rate is increasing as a function of time due to accelerated expansion of the volume of the past light cone. Present decay rate is about 3.7 times larger than the average decay rate in the past and the final decay rate in the cosmological constant dominated epoch will be about 56 times larger than the average decay rate in the past. This considerably weakens the lower bound on the half-life of our universe based on its current age.
- We numerically calculate the energy spectrum, intermittency exponents, and probability density $P(u')$ of the one-dimensional Burgers and KPZ equations with correlated noise. We have used pseudo-spectral method for our analysis. When $\sigma$ of the noise variance of the Burgers equation (variance $\propto k^{-2 \sigma}$) exceeds 3/2, large shocks appear in the velocity profile leading to $<|u(k)|^2> \propto k^{-2}$, and structure function $<|u(x+r,t)-u(x,t)|^q> \propto r$ suggesting that the Burgers equation is intermittent for this range of $\sigma$. For $-1 \le \sigma \le 0$, the profile is dominated by noise, and the spectrum $<|h(k)|^{2}>$ of the corresponding KPZ equation is in close agreement with Medina et al.'s renormalization group predictions. In the intermediate range $0 < \sigma <3/2$, both noise and well-developed shocks are seen, consequently the exponents slowly vary from RG regime to a shock-dominated regime. The probability density $P(h)$ and $P(u)$ are gaussian for all $\sigma$, while $P(u')$ is gaussian for $\sigma=-1$, but steadily becomes nongaussian for larger $\sigma$; for negative $u'$, $P(u') \propto \exp(-a x)$ for $\sigma=0$, and approximately $\propto u'^{-5/2}$ for $\sigma > 1/2$. We have also calculated the energy cascade rates for all $\sigma$ and found a constant flux for all $\sigma \ge 1/2$.
- withdrawn; Earlier versions of chao-dyn/9904020 & chao-dyn/9904021 have been combined into one paper.