results for au:Teuscher_C in:cs

- Apr 21 2017 cs.ET arXiv:1704.05921v1Over the last decade, memristive devices have been widely adopted in computing for various conventional and unconventional applications. While the integration density, memory property, and nonlinear characteristics have many benefits, reducing the energy consumption is limited by the resistive nature of the devices. Memcapacitors would address that limitation while still having all the benefits of memristors. Recent work has shown that with adjusted parameters during the fabrication process, a metal-oxide device can indeed exhibit a memcapacitive behavior. We introduce novel memcapacitive logic gates and memcapacitive crossbar classifiers as a proof of concept that such applications can outperform memristor-based architectures. The results illustrate that, compared to memristive logic gates, our memcapacitive gates consume about 7x less power. The memcapacitive crossbar classifier achieves similar classification performance but reduces the power consumption by a factor of about 1,500x for the MNIST dataset and a factor of about 1,000x for the CIFAR-10 dataset compared to a memristive crossbar. Our simulation results demonstrate that memcapacitive devices have great potential for both Boolean logic and analog low-power applications.
- Apr 21 2017 cs.ET arXiv:1704.05877v2Memristive crossbars have become a popular means for realizing unsupervised and supervised learning techniques. In previous neuromorphic architectures with leaky integrate-and-fire neurons, the crossbar itself has been separated from the neuron capacitors to preserve mathematical rigor. In this work, we sought to simplify the design, creating a fast circuit that consumed significantly lower power at a minimal cost of accuracy. We also showed that connecting the neurons directly to the crossbar resulted in a more efficient sparse coding architecture, and alleviated the need to pre-normalize receptive fields. This work provides derivations for the design of such a network, named the Simple Spiking Locally Competitive Algorithm, or SSLCA, as well as CMOS designs and results on the CIFAR and MNIST datasets. Compared to a non-spiking model which scored 33% on CIFAR-10 with a single-layer classifier, this hardware scored 32% accuracy. When used with a state-of-the-art deep learning classifier, the non-spiking model achieved 82% and our simplified, spiking model achieved 80%, while compressing the input data by 92%. Compared to a previously proposed spiking model, our proposed hardware consumed 99% less energy to do the same work at 21x the throughput. Accuracy held out with online learning to a write variance of 3%, suitable for the often-reported 4-bit resolution required for neuromorphic algorithms; with offline learning to a write variance of 27%; and with read variance to 40%. The proposed architecture's excellent accuracy, throughput, and significantly lower energy usage demonstrate the utility of our innovations. This work provides a means for extremely low-energy sparse coding in mobile devices, such as cellular phones, or for very sparse coding as is needed by self-driving cars or robotics that must integrate data from multiple, high-resolution sensors.
- Apr 26 2016 cs.NE arXiv:1604.06929v1Recurrent neural networks (RNN) are simple dynamical systems whose computational power has been attributed to their short-term memory. Short-term memory of RNNs has been previously studied analytically only for the case of orthogonal networks, and only under annealed approximation, and uncorrelated input. Here for the first time, we present an exact solution to the memory capacity and the task-solving performance as a function of the structure of a given network instance, enabling direct determination of the function--structure relation in RNNs. We calculate the memory capacity for arbitrary networks with exponentially correlated input and further related it to the performance of the system on signal processing tasks in a supervised learning setup. We compute the expected error and the worst-case error bound as a function of the spectra of the network and the correlation structure of its inputs and outputs. Our results give an explanation for learning and generalization of task solving using short-term memory, which is crucial for building alternative computer architectures using physical phenomena based on the short-term memory principle.
- Jul 15 2015 cs.ET arXiv:1507.03716v1Resistive switches are a class of emerging nanoelectronics devices that exhibit a wide variety of switching characteristics closely resembling behaviors of biological synapses. Assembled into random networks, such resistive switches produce emerging behaviors far more complex than that of individual devices. This was previously demonstrated in simulations that exploit information processing within these random networks to solve tasks that require nonlinear computation as well as memory. Physical assemblies of such networks manifest complex spatial structures and basic processing capabilities often related to biologically-inspired computing. We model and simulate random resistive switch networks and analyze their computational capacities. We provide a detailed discussion of the relevant design parameters and establish the link to the physical assemblies by relating the modeling parameters to physical parameters. More globally connected networks and an increased network switching activity are means to increase the computational capacity linearly at the expense of exponentially growing energy consumption. We discuss a new modular approach that exhibits higher computational capacities and energy consumption growing linearly with the number of networks used. The results show how to optimize the trade-off between computational capacity and energy efficiency and are relevant for the design and fabrication of novel computing architectures that harness random assemblies of emerging nanodevices.
- Advances in materials science have led to physical instantiations of self-assembled networks of memristive devices and demonstrations of their computational capability through reservoir computing. Reservoir computing is an approach that takes advantage of collective system dynamics for real-time computing. A dynamical system, called a reservoir, is excited with a time-varying signal and observations of its states are used to reconstruct a desired output signal. However, such a monolithic assembly limits the computational power due to signal interdependency and the resulting correlated readouts. Here, we introduce an approach that hierarchically composes a set of interconnected memristive networks into a larger reservoir. We use signal amplification and restoration to reduce reservoir state correlation, which improves the feature extraction from the input signals. Using the same number of output signals, such a hierarchical composition of heterogeneous small networks outperforms monolithic memristive networks by at least 20% on waveform generation tasks. On the NARMA-10 task, we reduce the error by up to a factor of 2 compared to homogeneous reservoirs with sigmoidal neurons, whereas single memristive networks are unable to produce the correct result. Hierarchical composition is key for solving more complex tasks with such novel nano-scale hardware.
- The chemical reaction network (CRN) is a widely used formalism to describe macroscopic behavior of chemical systems. Available tools for CRN modelling and simulation require local access, installation, and often involve local file storage, which is susceptible to loss, lacks searchable structure, and does not support concurrency. Furthermore, simulations are often single-threaded, and user interfaces are non-trivial to use. Therefore there are significant hurdles to conducting efficient and collaborative chemical research. In this paper, we introduce a new enterprise chemistry simulation framework, COEL, which addresses these issues. COEL is the first web-based framework of its kind. A visually pleasing and intuitive user interface, simulations that run on a large computational grid, reliable database storage, and transactional services make COEL ideal for collaborative research and education. COEL's most prominent features include ODE-based simulations of chemical reaction networks and multicompartment reaction networks, with rich options for user interactions with those networks. COEL provides DNA-strand displacement transformations and visualization (and is to our knowledge the first CRN framework to do so), GA optimization of rate constants, expression validation, an application-wide plotting engine, and SBML/Octave/Matlab export. We also present an overview of the underlying software and technologies employed and describe the main architectural decisions driving our development. COEL is available at http://coel-sim.org for selected research teams only. We plan to provide a part of COEL's functionality to the general public in the near future.
- Jun 16 2014 cs.ET arXiv:1406.3433v1Reconfiguration has been used for both defect- and fault-tolerant nanoscale architectures with regular structure. Recent advances in self-assembled nanowires have opened doors to a new class of electronic devices with irregular structure. For such devices, reservoir computing has been shown to be a viable approach to implement computation. This approach exploits the dynamical properties of a system rather than specifics of its structure. Here, we extend a model of reservoir computing, called the echo state network, to reflect more realistic aspects of self-assembled nanowire networks. As a proof of concept, we use echo state networks to implement basic building blocks of digital computing: AND, OR, and XOR gates, and 2-bit adder and multiplier circuits. We show that the system can operate perfectly in the presence of variations five orders of magnitude higher than ITRS's 2005 target, $\bm{6\%}$, and achieves success rates $\bm{6}$ times higher than related approaches at half the cost. We also describe an adaptive algorithm that can detect faults in the system and reconfigure it to resume perfect operational condition.
- The current biochemical information processing systems behave in a predetermined manner because all features are defined during the design phase. To make such unconventional computing systems reusable and programmable for biomedical applications, adaptation, learning, and self-modification based on external stimuli would be highly desirable. However, so far, it has been too challenging to implement these in wet chemistries. In this paper we extend the chemical perceptron, a model previously proposed by the authors, to function as an analog instead of a binary system. The new analog asymmetric signal perceptron learns through feedback and supports Michaelis-Menten kinetics. The results show that our perceptron is able to learn linear and nonlinear (quadratic) functions of two inputs. To the best of our knowledge, it is the first simulated chemical system capable of doing so. The small number of species and reactions and their simplicity allows for a mapping to an actual wet implementation using DNA-strand displacement or deoxyribozymes. Our results are an important step toward actual biochemical systems that can learn and adapt.
- Reservoir computing (RC) is a novel approach to time series prediction using recurrent neural networks. In RC, an input signal perturbs the intrinsic dynamics of a medium called a reservoir. A readout layer is then trained to reconstruct a target output from the reservoir's state. The multitude of RC architectures and evaluation metrics poses a challenge to both practitioners and theorists who study the task-solving performance and computational power of RC. In addition, in contrast to traditional computation models, the reservoir is a dynamical system in which computation and memory are inseparable, and therefore hard to analyze. Here, we compare echo state networks (ESN), a popular RC architecture, with tapped-delay lines (DL) and nonlinear autoregressive exogenous (NARX) networks, which we use to model systems with limited computation and limited memory respectively. We compare the performance of the three systems while computing three common benchmark time series: Hénon Map, NARMA10, and NARMA20. We find that the role of the reservoir in the reservoir computing paradigm goes beyond providing a memory of the past inputs. The DL and the NARX network have higher memorization capability, but fall short of the generalization power of the ESN.
- It has been shown \citepbroeck90:physicalreview,patarnello87:europhys that feedforward Boolean networks can learn to perform specific simple tasks and generalize well if only a subset of the learning examples is provided for learning. Here, we extend this body of work and show experimentally that random Boolean networks (RBNs), where both the interconnections and the Boolean transfer functions are chosen at random initially, can be evolved by using a state-topology evolution to solve simple tasks. We measure the learning and generalization performance, investigate the influence of the average node connectivity $K$, the system size $N$, and introduce a new measure that allows to better describe the network's learning and generalization behavior. We show that the connectivity of the maximum entropy networks scales as a power-law of the system size $N$. Our results show that networks with higher average connectivity $K$ (supercritical) achieve higher memorization and partial generalization. However, near critical connectivity, the networks show a higher perfect generalization on the even-odd task.
- This paper underscores the conjecture that intrinsic computation is maximal in systems at the "edge of chaos." We study the relationship between dynamics and computational capability in Random Boolean Networks (RBN) for Reservoir Computing (RC). RC is a computational paradigm in which a trained readout layer interprets the dynamics of an excitable component (called the reservoir) that is perturbed by external input. The reservoir is often implemented as a homogeneous recurrent neural network, but there has been little investigation into the properties of reservoirs that are discrete and heterogeneous. Random Boolean networks are generic and heterogeneous dynamical systems and here we use them as the reservoir. An RBN is typically a closed system; to use it as a reservoir we extend it with an input layer. As a consequence of perturbation, the RBN does not necessarily fall into an attractor. Computational capability in RC arises from a trade-off between separability and fading memory of inputs. We find the balance of these properties predictive of classification power and optimal at critical connectivity. These results are relevant to the construction of devices which exploit the intrinsic dynamics of complex heterogeneous systems, such as biomolecular substrates.
- We study information processing in populations of Boolean networks with evolving connectivity and systematically explore the interplay between the learning capability, robustness, the network topology, and the task complexity. We solve a long-standing open question and find computationally that, for large system sizes $N$, adaptive information processing drives the networks to a critical connectivity $K_{c}=2$. For finite size networks, the connectivity approaches the critical value with a power-law of the system size $N$. We show that network learning and generalization are optimized near criticality, given task complexity and the amount of information provided threshold values. Both random and evolved networks exhibit maximal topological diversity near $K_{c}$. We hypothesize that this supports efficient exploration and robustness of solutions. Also reflected in our observation is that the variance of the values is maximal in critical network populations. Finally, we discuss implications of our results for determining the optimal topology of adaptive dynamical networks that solve computational tasks.
- Independent of the technology, it is generally expected that future nanoscale devices will be built from vast numbers of densely arranged devices that exhibit high failure rates. Other than that, there is little consensus on what type of technology and computing architecture holds most promises to go far beyond today's top-down engineered silicon devices. Cellular automata (CA) have been proposed in the past as a possible class of architectures to the von Neumann computing architecture, which is not generally well suited for future parallel and fine-grained nanoscale electronics. While the top-down engineered semi-conducting technology favors regular and locally interconnected structures, future bottom-up self-assembled devices tend to have irregular structures because of the current lack precise control over these processes. In this paper, we will assess random dynamical networks, namely Random Boolean Networks (RBNs) and Random Threshold Networks (RTNs), as alternative computing architectures and models for future information processing devices. We will illustrate that--from a theoretical perspective--they offer superior properties over classical CA-based architectures, such as inherent robustness as the system scales up, more efficient information processing capabilities, and manufacturing benefits for bottom-up designed devices, which motivates this investigation. We will present recent results on the dynamic behavior and robustness of such random dynamical networks while also including manufacturing issues in the assessment.
- Future nano-scale electronics built up from an Avogadro number of components needs efficient, highly scalable, and robust means of communication in order to be competitive with traditional silicon approaches. In recent years, the Networks-on-Chip (NoC) paradigm emerged as a promising solution to interconnect challenges in silicon-based electronics. Current NoC architectures are either highly regular or fully customized, both of which represent implausible assumptions for emerging bottom-up self-assembled molecular electronics that are generally assumed to have a high degree of irregularity and imperfection. Here, we pragmatically and experimentally investigate important design trade-offs and properties of an irregular, abstract, yet physically plausible 3D small-world interconnect fabric that is inspired by modern network-on-chip paradigms. We vary the framework's key parameters, such as the connectivity, the number of switch nodes, the distribution of long- versus short-range connections, and measure the network's relevant communication characteristics. We further explore the robustness against link failures and the ability and efficiency to solve a simple toy problem, the synchronization task. The results confirm that (1) computation in irregular assemblies is a promising and disruptive computing paradigm for self-assembled nano-scale electronics and (2) that 3D small-world interconnect fabrics with a power-law decaying distribution of shortcut lengths are physically plausible and have major advantages over local 2D and 3D regular topologies.
- Robustness to a wide variety of negative factors and the ability to self-repair is an inherent and natural characteristic of all life forms on earth. As opposed to nature, man-made systems are in most cases not inherently robust and a significant effort has to be made in order to make them resistant against failures. This can be done in a wide variety of ways and on various system levels. In the field of digital systems, for example, techniques such as triple modular redundancy (TMR) are frequently used, which results in a considerable hardware overhead. Biologically-inspired computing by means of bio-chemical metaphors offers alternative paradigms, which need to be explored and evaluated. Here, we are interested to evaluate the potential of nature-inspired artificial chemistries and membrane systems as an alternative information representing and processing paradigm in order to obtain robust and spatially extended Boolean computing systems in a distributed environment. We investigate conceptual approaches inspired by artificial chemistries and membrane systems and compare proof-of-concepts. First, we show, that elementary logical functions can be implemented. Second, we illustrate how they can be made more robust and how they can be assembled to larger-scale systems. Finally, we discuss the implications for and paths to possible genuine implementations. Compared to the main body of work in artificial chemistries, we take a very pragmatic and implementation-oriented approach and are interested in realizing Boolean computations only. The results emphasize that artificial chemistries can be used to implement Boolean logic in a spatially extended and distributed environment and can also be made highly robust, but at a significant price.