results for au:Taylor_J in:gr-qc

- Feb 15 2018 gr-qc arXiv:1802.05241v1We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0e-8, +1e-9] Hz/s. Potential signals could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h_0 is 4e-25 near 170 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 1.3e-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ~1.5e-25.
- Dec 05 2017 gr-qc astro-ph.CO arXiv:1712.01168v1Cosmic strings are topological defects which can be formed in GUT-scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension $G\mu$ and the intercommutation probability, using not only the burst analysis performed on the O1 data set, but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and Big-Bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.
- Nov 16 2017 astro-ph.HE gr-qc arXiv:1711.05578v1On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through gravitational waves with electromagnetic observations. The source's luminosity distance is $340^{+140}_{-140}$ Mpc, corresponding to redshift $0.07^{+0.03}_{-0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity.
- Oct 26 2017 astro-ph.HE gr-qc arXiv:1710.09320v1The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the equation of state of nuclear matter. This could be either a black hole or a neutron star (NS), with the latter being either long-lived or too massive for stability implying delayed collapse to a black hole. Here, we present a search for gravitational waves from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short ($\lesssim1$ s) and intermediate-duration ($\lesssim 500$ s) signals, which includes gravitational-wave emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root-sum-square of the gravitational-wave strain emitted from 1--4 kHz is $h_{\rm rss}^{50\%}=2.1\times 10^{-22}$ Hz$^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is $h_{\rm rss}^{50\%}=8.4\times 10^{-22}$ Hz$^{-1/2}$ for a millisecond magnetar model, and $h_{\rm rss}^{50\%}=5.9\times 10^{-22}$ Hz$^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.
- Oct 17 2017 gr-qc arXiv:1710.05837v1The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.8_{-1.3}^{+2.7} \times 10^{-9}$ with $90\%$ confidence, compared with $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.1_{-0.7}^{+1.2} \times 10^{-9}$ from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
- Oct 09 2017 gr-qc astro-ph.HE arXiv:1710.02327v2Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, \it narrow-band analyses methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of eleven pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched: in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.
- Sep 28 2017 gr-qc arXiv:1709.09203v1We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously-published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity.
- Sep 28 2017 gr-qc astro-ph.HE arXiv:1709.09660v3On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm-rate of $\lesssim$ 1 in 27000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are $30.5_{-3.0}^{+5.7}$ Msun and $25.3_{-4.2}^{+2.8}$ Msun (at the 90% credible level). The luminosity distance of the source is $540_{-210}^{+130}~\mathrm{Mpc}$, corresponding to a redshift of $z=0.11_{-0.04}^{+0.03}$. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg$^2$ using only the two LIGO detectors to 60 deg$^2$ using all three detectors. For the first time, we can test the nature of gravitational wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.
- Jul 11 2017 gr-qc astro-ph.IM arXiv:1707.02667v2We report on an all-sky search for periodic gravitational waves in the frequency band 20-475 Hz and with a frequency time derivative in the range of [-1.0, +0.1]e-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are 4e-25 near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest upper limits obtained are 1.5e-25. These upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest upper limits obtained for the strain amplitude are 2.5e-25.
- Jul 11 2017 gr-qc arXiv:1707.02669v2We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1/$\sqrt{{\textrm{Hz}}}$]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of $1.8 \times 10^{-25}$. At the low end of our frequency range, 20 Hz, we achieve upper limits of $3.9 \times 10^{-24}$. At 55 Hz we can exclude sources with ellipticities greater than $10^{-5}$ within 100 pc of Earth with fiducial value of the principal moment of inertia of $10^{38} \textrm{kg m}^2$.
- Jun 13 2017 astro-ph.HE gr-qc arXiv:1706.03119v3We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modelled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range from 25 Hz to 2000 Hz, spanning the current observationally-constrained range of the binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at 175 Hz, with comparable limits set across the most sensitive frequency range from 100 Hz to 200 Hz. At this frequency, the 95 pct upper limit on signal amplitude h0 is 2.3e-25 marginalized over the unknown inclination angle of the neutron star's spin, and 8.03e-26 assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3-4 stronger than those set by other analyses of the same data, and a factor of about 7 stronger than the best upper limits set using initial LIGO data. In the vicinity of 100 Hz, the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on inclination angle, if the most likely inclination angle of 44 degrees is assumed, they are within a factor of 1.7.
- Jun 07 2017 gr-qc astro-ph.HE arXiv:1706.01812v1We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10:11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70,000 years. The inferred component black hole masses are $31.2^{+8.4}_{-6.0}\,M_\odot$ and $19.4^{+5.3}_{-5.9}\,M_\odot$ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, $\chi_\mathrm{eff} = -0.12^{+0.21}_{-0.30}.$ This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is $880^{+450}_{-390}~\mathrm{Mpc}$ corresponding to a redshift of $z = 0.18^{+0.08}_{-0.07}$. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to $m_g \le 7.7 \times 10^{-23}~\mathrm{eV}/c^2$. In all cases, we find that GW170104 is consistent with general relativity.
- The simplest cosmology --- the Friedmann-Robertson-Walker-Lemaître (FRW) model --- describes a spatially homogeneous and isotropic universe where the scale factor is the only dynamical parameter. Here we consider how quantized electromagnetic fields become entangled with the scale factor in a toy version of the FRW model. A system consisting of a photon, source, and detector is described in such a universe, and we find that the detection of a redshifted photon by the detector system constrains possible scale factor superpositions. Thus, measuring the redshift of the photon is equivalent to a weak measurement of the underlying cosmology. We also consider a potential optomechanical analogy system that would enable experimental exploration of these concepts. The analogy focuses on the effects of photon redshift measurement as a quantum back-action on metric variables, where the position of a movable mirror plays the role of the scale factor. By working in the rotating frame, an effective Hubble equation can be simulated with a simple free moving mirror.
- Apr 18 2017 gr-qc arXiv:1704.04628v4During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals and GW151226, produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected, therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass $100\,M_\odot$, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than $0.93~\mathrm{Gpc^{-3}\,yr}^{-1}$ in comoving units at the $90\%$ confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.
- Apr 13 2017 gr-qc arXiv:1704.03719v3Results are presented from a semi-coherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run (O1). The search combines a frequency domain matched filter (Bessel-weighted $\mathcal{F}$-statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No evidence of gravitational waves is found in the frequency range 60-650 Hz. Frequentist 95% confidence strain upper limits, $h_0^{95\%} = 4.0\times10^{-25}$, $8.3\times10^{-25}$, and $3.0\times10^{-25}$ for electromagnetically restricted source orientation, unknown polarization, and circular polarization, respectively, are reported at 106 Hz. They are $\leq 10$ times higher than the theoretical torque-balance limit at 106 Hz.
- We show that, by treating the gravitational interaction between two mechanical resonators as a classical measurement channel, a gravitational decoherence model results that is equivalent to a model first proposed by Diosi. The resulting decoherence model implies that the classically mediated gravitational interaction between two gravitationally coupled resonators cannot create entanglement. The gravitational decoherence rate ( and the complementary heating rate) is of the order of the gravitationally induced normal mode splitting of the two resonators.
- We present an optically-detected mechanical accelerometer that achieves a sensitivity of 100 ng/rtHz over a bandwidth of 10kHz and is traceable. We have incorporated a Fabry-Perot fiber-optic micro-cavity that is currently capable of measuring the test-mass displacement with sensitivities of 200 am/rtHz, and whose length determination enables traceability to the International System of Units (SI). The compact size and high mQ-product achieved combined with the high sensitivity and simplicity of the implemented optical detection scheme highlight our device and this category of accelerometers, outlining a path for high sensitivity reference acceleration measurements and observations in seismology and gravimetry.
- May 11 2012 astro-ph.HE gr-qc arXiv:1205.2216v3We present the results of a search for gravitational waves associated with 154 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments in 2009-2010, during the sixth LIGO science run and the second and third Virgo science runs. We perform two distinct searches: a modeled search for coalescences of either two neutron stars or a neutron star and black hole; and a search for generic, unmodeled gravitational-wave bursts. We find no evidence for gravitational-wave counterparts, either with any individual GRB in this sample or with the population as a whole. For all GRBs we place lower bounds on the distance to the progenitor, under the optimistic assumption of a gravitational-wave emission energy of 10^-2 M c^2 at 150 Hz, with a median limit of 17 Mpc. For short hard GRBs we place exclusion distances on binary neutron star and neutron star-black hole progenitors, using astrophysically motivated priors on the source parameters, with median values of 16 Mpc and 28 Mpc respectively. These distance limits, while significantly larger than for a search that is not aided by GRB satellite observations, are not large enough to expect a coincidence with a GRB. However, projecting these exclusions to the sensitivities of Advanced LIGO and Virgo, which should begin operation in 2015, we find that the detection of gravitational waves associated with GRBs will become quite possible.
- Feb 14 2012 gr-qc arXiv:1202.2788v3We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration < 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc^3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range 5 10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.
- Jan 31 2012 gr-qc arXiv:1201.5999v3We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100--450 solar masses and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88 solar masses, for non-spinning sources, the rate density upper limit is 0.13 per Mpc^3 per Myr at the 90% confidence level.
- Jan 24 2012 astro-ph.HE gr-qc arXiv:1201.4413v3We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst (GRB) whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at the distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission with a jet semi-angle of 30 deg we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with > 99% confidence. If the event occurred in M81 our findings support the the hypothesis that GRB 051103 was due to an SGR giant flare, making it the most distant extragalactic magnetar observed to date.
- Dec 22 2011 gr-qc arXiv:1112.5004v4A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95% upper limit on the amplitude of $\Omega_{\rm GW}(f) = \Omega_3 (f/900 \mathrm{Hz})^3$, of $\Omega_3 < 0.33$, assuming a value of the Hubble parameter of $h_{100}=0.72$. These new limits are a factor of seven better than the previous best in this frequency band.
- Dec 01 2011 gr-qc arXiv:1111.7314v4We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009 and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25 solar masses; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90%-confidence rate upper limits of the binary coalescence of binary neutron star, neutron star- black hole and binary black hole systems are 1.3 x 10^-4, 3.1 x 10^-5 and 6.4 x 10^-6 Mpc^-3yr^-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
- Oct 04 2011 gr-qc arXiv:1110.0208v1We report on an all-sky search for periodic gravitational waves in the frequency band 50-800 Hz and with the frequency time derivative in the range of 0 through -6e-9 Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. After recent improvements in the search program that yielded a 10x increase in computational efficiency, we have searched in two years of data collected during LIGO's fifth science run and have obtained the most sensitive all-sky upper limits on gravitational wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude $h_0$ is 1e-24, while at the high end of our frequency range we achieve a worst-case upper limit of 3.8e-24 for all polarizations and sky locations. These results constitute a factor of two improvement upon previously published data. A new detection pipeline utilizing a Loosely Coherent algorithm was able to follow up weaker outliers, increasing the volume of space where signals can be detected by a factor of 10, but has not revealed any gravitational wave signals. The pipeline has been tested for robustness with respect to deviations from the model of an isolated neutron star, such as caused by a low-mass or long-period binary companion.
- Sep 17 2011 astro-ph.IM gr-qc arXiv:1109.3498v2Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipeline's ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.
- Apr 15 2011 astro-ph.HE gr-qc arXiv:1104.2712v2We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, $1.9\ee{-24}$ and $2.2\ee{-24}$, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of $2.1\ee{-24}$, with 95% degree of belief. These limits are below the indirect \it spin-down limit of $3.3\ee{-24}$ for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of $\sim 10^{-3}$. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and the wave polarization angles are unknown.
- Feb 21 2011 gr-qc arXiv:1102.3781v1We present the first modeled search for gravitational waves using the complete binary black hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data taken between November 2005 and September 2007 for systems with component masses of 1-99 solar masses and total masses of 25-100 solar masses. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for binary black hole systems with component masses between 19 and 28 solar masses and negligible spin to be no more than 2.0 per Mpc^3 per Myr at 90% confidence.
- Nov 19 2010 astro-ph.HE gr-qc arXiv:1011.4079v2Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely ~1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10^44 erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between November 2006 and June 2009, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band- and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0x10^44 d_1^2 erg and 1.4x10^47 d_1^2 erg respectively, where d_1 = d_0501 / 1 kpc and d_0501 is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.
- Nov 08 2010 gr-qc astro-ph.SR arXiv:1011.1357v3The physical mechanisms responsible for pulsar timing glitches are thought to excite quasi-normal mode oscillations in their parent neutron star that couple to gravitational wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two co-located Hanford gravitational wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6.3e-21 to 1.4e-20 on the peak intrinsic strain amplitude of gravitational wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0e44 to 1.3e45 erg.
- Nov 03 2010 astro-ph.GA gr-qc arXiv:1011.0718v1We present results of more than three decades of timing measurements of the first known binary pulsar, PSR B1913+16. Like most other pulsars, its rotational behavior over such long time scales is significantly affected by small-scale irregularities not explicitly accounted for in a deterministic model. Nevertheless, the physically important astrometric, spin, and orbital parameters are well determined and well decoupled from the timing noise. We have determined a significant result for proper motion, $\mu_{\alpha} = -1.43\pm0.13$, $\mu_{\delta}=-0.70\pm0.13$ mas yr$^{-1}$. The pulsar exhibited a small timing glitch in May 2003, with ${\Delta f}/f=3.7\times10^{-11}$, and a smaller timing peculiarity in mid-1992. A relativistic solution for orbital parameters yields improved mass estimates for the pulsar and its companion, $m_1=1.4398\pm0.0002 \ M_{\sun}$ and $m_2=1.3886\pm0.0002 \ M_{\sun}$. The system's orbital period has been decreasing at a rate $0.997\pm0.002$ times that predicted as a result of gravitational radiation damping in general relativity. As we have shown before, this result provides conclusive evidence for the existence of gravitational radiation as predicted by Einstein's theory.
- Jul 23 2010 gr-qc arXiv:1007.3973v1The Laser Interferometer Gravitational Wave Observatory (LIGO) is a network of three detectors built to detect local perturbations in the space-time metric from astrophysical sources. These detectors, two in Hanford, WA and one in Livingston, LA, are power-recycled Fabry-Perot Michelson interferometers. In their fifth science run (S5), between November 2005 and October 2007, these detectors accumulated one year of triple coincident data while operating at their designed sensitivity. In this paper, we describe the calibration of the instruments in the S5 data set, including measurement techniques and uncertainty estimation.
- Jun 15 2010 gr-qc astro-ph.HE arXiv:1006.2535v2We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12-day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory. It searches gravitational wave frequencies from 100 to 300 Hz, and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and for different spin-down mechanisms. No gravitational wave signal was detected. Within the range of search frequencies, we set 95% confidence upper limits of 0.7--1.2e-24 on the intrinsic gravitational wave strain, 0.4--4e-4 on the equatorial ellipticity of the neutron star, and 0.005--0.14 on the amplitude of r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes. This is the first gravitational wave search to present upper limits on r-modes.
- We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the Initial and Advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters, and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our Galaxy. These yield a likely coalescence rate of 100 per Myr per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 per Myr per MWEG to 1000 per Myr per MWEG. We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our Advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO-Virgo interferometers, with a plausible range between 0.0002 and 0.2 per year. The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.
- Mar 15 2010 gr-qc arXiv:1003.2481v3We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during LIGO's fifth science run and Virgo's first science run. We present noise spectral density curves for each of the four detectors that operated during these science runs which are representative of the typical performance achieved by the detectors for CBC searches. These spectra are intended for release to the public as a summary of detector performance for CBC searches during these science runs.
- We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated search method that allows for small uncertainties in the pulsar phase parameters to be included in the search. We report no signal detection from any of the targets and therefore interpret our results as upper limits on the gravitational wave signal strength. The most interesting limits are those for young pulsars. We present updated limits on gravitational radiation from the Crab pulsar, where the measured limit is now a factor of seven below the spin-down limit. This limits the power radiated via gravitational waves to be less than ~2% of the available spin-down power. For the X-ray pulsar J0537-6910 we reach the spin-down limit under the assumption that any gravitational wave signal from it stays phase locked to the X-ray pulses over timing glitches, and for pulsars J1913+1011 and J1952+3252 we are only a factor of a few above the spin-down limit. Of the recycled millisecond pulsars several of the measured upper limits are only about an order of magnitude above their spin-down limits. For these our best (lowest) upper limit on gravitational wave amplitude is 2.3x10^-26 for J1603-7202 and our best (lowest) limit on the inferred pulsar ellipticity is 7.0x10^-8 for J2124-3358.
- Aug 27 2009 astro-ph.HE gr-qc arXiv:0908.3824v2We present the results of a search for gravitational-wave bursts associated with 137 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments during the fifth LIGO science run and first Virgo science run. The data used in this analysis were collected from 2005 November 4 to 2007 October 1, and most of the GRB triggers were from the Swift satellite. The search uses a coherent network analysis method that takes into account the different locations and orientations of the interferometers at the three LIGO-Virgo sites. We find no evidence for gravitational-wave burst signals associated with this sample of GRBs. Using simulated short-duration (<1 s) waveforms, we set upper limits on the amplitude of gravitational waves associated with each GRB. We also place lower bounds on the distance to each GRB under the assumption of a fixed energy emission in gravitational waves, with typical limits of D ~ 15 Mpc (E_GW^iso / 0.01 M_o c^2)^1/2 for emission at frequencies around 150 Hz, where the LIGO-Virgo detector network has best sensitivity. We present astrophysical interpretations and implications of these results, and prospects for corresponding searches during future LIGO-Virgo runs.
- We describe results derived from thirty years of observations of PSR B1913+16. Together with the Keplerian orbital parameters, measurements of the relativistic periastron advance and a combination of gravitational redshift and time dilation yield the stellar masses with high accuracy. The measured rate of change of orbital period agrees with that expected from the emission of gravitational radiation, according to general relativity, to within about 0.2 percent. Systematic effects depending on the pulsar distance and on poorly known galactic constants now dominate the error budget, so tighter bounds will be difficult to obtain. Geodetic precession of the pulsar spin axis leads to secular changes in pulse shape as the pulsar-observer geometry changes. This effect makes it possible to model the two-dimensional structure of the beam. We find that the beam is elongated in the latitude direction and appears to be pinched in longitude near its center.
- We describe the results of a relativistic analysis of our observations of binary pulsar B1913+16, up to the latest measurements in 2001 August.
- We estimate the coalescence rate of close binaries with two neutron stars (NS) and discuss the prospects for the detection of NS-NS inspiral events by ground-based gravitational-wave observatories, such as LIGO. We derive the Galactic coalescence rate using the observed sample of close NS-NS binaries (PSR B1913+16 and PSR B1534+12) and examine in detail each of the sources of uncertainty associated with the estimate. Specifically, we investigate (i) the dynamical evolution of NS-NS binaries in the Galactic potential and the vertical scale height of the population, (ii) the pulsar lifetimes, (iii) the effects of the faint end of the radio pulsar luminosity function and their dependence on the small number of observed objects, (iv) the beaming fraction, and (v) the extrapolation of the Galactic rate to extragalactic distances expected to be reachable by LIGO. We find that the dominant source of uncertainty is the correction factor (up to about 200) for faint (undetectable) pulsars. All other sources are much less important, each with uncertainty factors smaller than 2. Despite the relatively large uncertainty, the derived coalescence rate is approximately consistent with previously derived upper limits, and is more accurate than rates obtained from population studies. We obtain a most conservative lower limit for the LIGO II detection rate of 2 events per year. Our upper limit on the detection rate lies between 300 to more than 1000 events per year.
- We have made timing observations of binary pulsar PSR B1534+12 with radio telescopes at Arecibo, Green Bank, and Jodrell Bank. By combining our new observations with data collected up to seven years earlier, we obtain a significantly improved solution for the astrometric, spin, and orbital parameters of the system. For the first time in any binary pulsar system, no fewer than five relativistic or "post-Keplerian" orbital parameters are measurable with useful accuracies in a theory-independent way. We find the orbital period of the system to be decreasing at a rate close to that expected from gravitational radiation damping, according to general relativity, although the precision of this test is limited to about 15% by the otherwise poorly known distance to the pulsar. The remaining post-Keplerian parameters are all consistent with one another and all but one of them have fractional accuracies better than 1%. By assuming that general relativity is the correct theory of gravity, at least to the accuracy demanded by this experiment, we find the masses of the pulsar and companion star each to be 1.339+-0.003 Msun and the system's distance to be d = 1.1+-0.2 kpc, marginally larger than the d ~ 0.7 kpc estimated from the dispersion measure. The increased distance reduces estimates of the projected rate of coalescence of double neutron-star systems in the universe, a quantity of considerable interest for experiments with terrestrial gravitational wave detectors such as LIGO.