results for au:Spantini_A in:stat

- Integration against an intractable probability measure is among the fundamental challenges of statistical inference, particularly in the Bayesian setting. A principled approach to this problem seeks a deterministic coupling of the measure of interest with a tractable "reference" measure (e.g., a standard Gaussian). This coupling is induced by a transport map, and enables direct simulation from the desired measure simply by evaluating the transport map at samples from the reference. Yet characterizing such a map---e.g., representing and evaluating it---grows challenging in high dimensions. The central contribution of this paper is to establish a link between the Markov properties of the target measure and the existence of certain low-dimensional couplings, induced by transport maps that are sparse or decomposable. Our analysis not only facilitates the construction of couplings in high-dimensional settings, but also suggests new inference methodologies. For instance, in the context of nonlinear and non-Gaussian state space models, we describe new variational algorithms for online filtering, smoothing, and parameter estimation. These algorithms implicitly characterize---via a transport map---the full posterior distribution of the sequential inference problem using local operations only incrementally more complex than regular filtering, while avoiding importance sampling or resampling.
- We propose optimal dimensionality reduction techniques for the solution of goal-oriented linear-Gaussian inverse problems, where the quantity of interest (QoI) is a function of the inversion parameters. These approximations are suitable for large-scale applications. In particular, we study the approximation of the posterior covariance of the QoI as a low-rank negative update of its prior covariance, and prove optimality of this update with respect to the natural geodesic distance on the manifold of symmetric positive definite matrices. Assuming exact knowledge of the posterior mean of the QoI, the optimality results extend to optimality in distribution with respect to the Kullback-Leibler divergence and the Hellinger distance between the associated distributions. We also propose approximation of the posterior mean of the QoI as a low-rank linear function of the data, and prove optimality of this approximation with respect to a weighted Bayes risk. Both of these optimal approximations avoid the explicit computation of the full posterior distribution of the parameters and instead focus on directions that are well informed by the data and relevant to the QoI. These directions stem from a balance among all the components of the goal-oriented inverse problem: prior information, forward model, measurement noise, and ultimate goals. We illustrate the theory using a high-dimensional inverse problem in heat transfer.
- We present the fundamentals of a measure transport approach to sampling. The idea is to construct a deterministic coupling---i.e., a transport map---between a complex "target" probability measure of interest and a simpler reference measure. Given a transport map, one can generate arbitrarily many independent and unweighted samples from the target simply by pushing forward reference samples through the map. We consider two different and complementary scenarios: first, when only evaluations of the unnormalized target density are available, and second, when the target distribution is known only through a finite collection of samples. We show that in both settings the desired transports can be characterized as the solutions of variational problems. We then address practical issues associated with the optimization--based construction of transports: choosing finite-dimensional parameterizations of the map, enforcing monotonicity, quantifying the error of approximate transports, and refining approximate transports by enriching the corresponding approximation spaces. Approximate transports can also be used to "Gaussianize" complex distributions and thus precondition conventional asymptotically exact sampling schemes. We place the measure transport approach in broader context, describing connections with other optimization--based samplers, with inference and density estimation schemes using optimal transport, and with alternative transformation--based approaches to simulation. We also sketch current work aimed at the construction of transport maps in high dimensions, exploiting essential features of the target distribution (e.g., conditional independence, low-rank structure). The approaches and algorithms presented here have direct applications to Bayesian computation and to broader problems of stochastic simulation.
- In the Bayesian approach to inverse problems, data are often informative, relative to the prior, only on a low-dimensional subspace of the parameter space. Significant computational savings can be achieved by using this subspace to characterize and approximate the posterior distribution of the parameters. We first investigate approximation of the posterior covariance matrix as a low-rank update of the prior covariance matrix. We prove optimality of a particular update, based on the leading eigendirections of the matrix pencil defined by the Hessian of the negative log-likelihood and the prior precision, for a broad class of loss functions. This class includes the FĂ¶rstner metric for symmetric positive definite matrices, as well as the Kullback-Leibler divergence and the Hellinger distance between the associated distributions. We also propose two fast approximations of the posterior mean and prove their optimality with respect to a weighted Bayes risk under squared-error loss. These approximations are deployed in an offline-online manner, where a more costly but data-independent offline calculation is followed by fast online evaluations. As a result, these approximations are particularly useful when repeated posterior mean evaluations are required for multiple data sets. We demonstrate our theoretical results with several numerical examples, including high-dimensional X-ray tomography and an inverse heat conduction problem. In both of these examples, the intrinsic low-dimensional structure of the inference problem can be exploited while producing results that are essentially indistinguishable from solutions computed in the full space.
- The intrinsic dimensionality of an inverse problem is affected by prior information, the accuracy and number of observations, and the smoothing properties of the forward operator. From a Bayesian perspective, changes from the prior to the posterior may, in many problems, be confined to a relatively low-dimensional subspace of the parameter space. We present a dimension reduction approach that defines and identifies such a subspace, called the "likelihood-informed subspace" (LIS), by characterizing the relative influences of the prior and the likelihood over the support of the posterior distribution. This identification enables new and more efficient computational methods for Bayesian inference with nonlinear forward models and Gaussian priors. In particular, we approximate the posterior distribution as the product of a lower-dimensional posterior defined on the LIS and the prior distribution marginalized onto the complementary subspace. Markov chain Monte Carlo sampling can then proceed in lower dimensions, with significant gains in computational efficiency. We also introduce a Rao-Blackwellization strategy that de-randomizes Monte Carlo estimates of posterior expectations for additional variance reduction. We demonstrate the efficiency of our methods using two numerical examples: inference of permeability in a groundwater system governed by an elliptic PDE, and an atmospheric remote sensing problem based on Global Ozone Monitoring System (GOMOS) observations.