results for au:Smola_A in:stat

- Nonparametric models are versatile, albeit computationally expensive, tool for modeling mixture models. In this paper, we introduce spectral methods for the two most popular nonparametric models: the Indian Buffet Process (IBP) and the Hierarchical Dirichlet Process (HDP). We show that using spectral methods for the inference of nonparametric models are computationally and statistically efficient. In particular, we derive the lower-order moments of the IBP and the HDP, propose spectral algorithms for both models, and provide reconstruction guarantees for the algorithms. For the HDP, we further show that applying hierarchical models on dataset with hierarchical structure, which can be solved with the generalized spectral HDP, produces better solutions to that of flat models regarding likelihood performance.
- In this paper, we study the problem of designing objective functions for machine learning problems defined on finite \emphsets. In contrast to traditional objective functions defined for machine learning problems operating on finite dimensional vectors, the new objective functions we propose are operating on finite sets and are invariant to permutations. Such problems are widespread, ranging from estimation of population statistics \citeppoczos13aistats, via anomaly detection in piezometer data of embankment dams \citepJung15Exploration, to cosmology \citepNtampaka16Dynamical,Ravanbakhsh16ICML1. Our main theorem characterizes the permutation invariant objective functions and provides a family of functions to which any permutation invariant objective function must belong. This family of functions has a special structure which enables us to design a deep network architecture that can operate on sets and which can be deployed on a variety of scenarios including both unsupervised and supervised learning tasks. We demonstrate the applicability of our method on population statistic estimation, point cloud classification, set expansion, and image tagging.
- Nov 22 2016 stat.ML arXiv:1611.06843v1In this paper we describe an algorithm for predicting the websites at risk in a long range hacking activity, while jointly inferring the provenance and evolution of vulnerabilities on websites over continuous time. Specifically, we use hazard regression with a time-varying additive hazard function parameterized in a generalized linear form. The activation coefficients on each feature are continuous-time functions constrained with total variation penalty inspired by hacking campaigns. We show that the optimal solution is a 0th order spline with a finite number of adaptively chosen knots, and can be solved efficiently. Experiments on real data show that our method significantly outperforms classic methods while providing meaningful interpretability.
- We propose a method to optimize the representation and distinguishability of samples from two probability distributions, by maximizing the estimated power of a statistical test based on the maximum mean discrepancy (MMD). This optimized MMD is applied to the setting of unsupervised learning by generative adversarial networks (GAN), in which a model attempts to generate realistic samples, and a discriminator attempts to tell these apart from data samples. In this context, the MMD may be used in two roles: first, as a discriminator, either directly on the samples, or on features of the samples. Second, the MMD can be used to evaluate the performance of a generative model, by testing the model's samples against a reference data set. In the latter role, the optimized MMD is particularly helpful, as it gives an interpretable indication of how the model and data distributions differ, even in cases where individual model samples are not easily distinguished either by eye or by classifier.
- In this paper we describe an algorithm for estimating the provenance of hacks on websites. That is, given properties of sites and the temporal occurrence of attacks, we are able to attribute individual attacks to joint causes and vulnerabilities, as well as estimating the evolution of these vulnerabilities over time. Specifically, we use hazard regression with a time-varying additive hazard function parameterized in a generalized linear form. The activation coefficients on each feature are continuous-time functions over time. We formulate the problem of learning these functions as a constrained variational maximum likelihood estimation problem with total variation penalty and show that the optimal solution is a 0th order spline (a piecewise constant function) with a finite number of known knots. This allows the inference problem to be solved efficiently and at scale by solving a finite dimensional optimization problem. Extensive experiments on real data sets show that our method significantly outperforms Cox's proportional hazard model. We also conduct a case study and verify that the fitted functions are indeed recovering vulnerable features and real-life events such as the release of code to exploit these features in hacker blogs.
- In this paper, we present two new communication-efficient methods for distributed minimization of an average of functions. The first algorithm is an inexact variant of the DANE algorithm that allows any local algorithm to return an approximate solution to a local subproblem. We show that such a strategy does not affect the theoretical guarantees of DANE significantly. In fact, our approach can be viewed as a robustification strategy since the method is substantially better behaved than DANE on data partition arising in practice. It is well known that DANE algorithm does not match the communication complexity lower bounds. To bridge this gap, we propose an accelerated variant of the first method, called AIDE, that not only matches the communication lower bounds but can also be implemented using a purely first-order oracle. Our empirical results show that AIDE is superior to other communication efficient algorithms in settings that naturally arise in machine learning applications.
- We study Frank-Wolfe methods for nonconvex stochastic and finite-sum optimization problems. Frank-Wolfe methods (in the convex case) have gained tremendous recent interest in machine learning and optimization communities due to their projection-free property and their ability to exploit structured constraints. However, our understanding of these algorithms in the nonconvex setting is fairly limited. In this paper, we propose nonconvex stochastic Frank-Wolfe methods and analyze their convergence properties. For objective functions that decompose into a finite-sum, we leverage ideas from variance reduction techniques for convex optimization to obtain new variance reduced nonconvex Frank-Wolfe methods that have provably faster convergence than the classical Frank-Wolfe method. Finally, we show that the faster convergence rates of our variance reduced methods also translate into improved convergence rates for the stochastic setting.
- We analyze stochastic algorithms for optimizing nonconvex, nonsmooth finite-sum problems, where the nonconvex part is smooth and the nonsmooth part is convex. Surprisingly, unlike the smooth case, our knowledge of this fundamental problem is very limited. For example, it is not known whether the proximal stochastic gradient method with constant minibatch converges to a stationary point. To tackle this issue, we develop fast stochastic algorithms that provably converge to a stationary point for constant minibatches. Furthermore, using a variant of these algorithms, we show provably faster convergence than batch proximal gradient descent. Finally, we prove global linear convergence rate for an interesting subclass of nonsmooth nonconvex functions, that subsumes several recent works. This paper builds upon our recent series of papers on fast stochastic methods for smooth nonconvex optimization [22, 23], with a novel analysis for nonconvex and nonsmooth functions.
- We analyze a fast incremental aggregated gradient method for optimizing nonconvex problems of the form $\min_x \sum_i f_i(x)$. Specifically, we analyze the SAGA algorithm within an Incremental First-order Oracle framework, and show that it converges to a stationary point provably faster than both gradient descent and stochastic gradient descent. We also discuss a Polyak's special class of nonconvex problems for which SAGA converges at a linear rate to the global optimum. Finally, we analyze the practically valuable regularized and minibatch variants of SAGA. To our knowledge, this paper presents the first analysis of fast convergence for an incremental aggregated gradient method for nonconvex problems.
- We study nonconvex finite-sum problems and analyze stochastic variance reduced gradient (SVRG) methods for them. SVRG and related methods have recently surged into prominence for convex optimization given their edge over stochastic gradient descent (SGD); but their theoretical analysis almost exclusively assumes convexity. In contrast, we prove non-asymptotic rates of convergence (to stationary points) of SVRG for nonconvex optimization, and show that it is provably faster than SGD and gradient descent. We also analyze a subclass of nonconvex problems on which SVRG attains linear convergence to the global optimum. We extend our analysis to mini-batch variants of SVRG, showing (theoretical) linear speedup due to mini-batching in parallel settings.
- In distributed machine learning, data is dispatched to multiple machines for processing. Motivated by the fact that similar data points often belong to the same or similar classes, and more generally, classification rules of high accuracy tend to be "locally simple but globally complex" (Vapnik & Bottou 1993), we propose data dependent dispatching that takes advantage of such structure. We present an in-depth analysis of this model, providing new algorithms with provable worst-case guarantees, analysis proving existing scalable heuristics perform well in natural non worst-case conditions, and techniques for extending a dispatching rule from a small sample to the entire distribution. We overcome novel technical challenges to satisfy important conditions for accurate distributed learning, including fault tolerance and balancedness. We empirically compare our approach with baselines based on random partitioning, balanced partition trees, and locality sensitive hashing, showing that we achieve significantly higher accuracy on both synthetic and real world image and advertising datasets. We also demonstrate that our technique strongly scales with the available computing power.
- Understanding a user's motivations provides valuable information beyond the ability to recommend items. Quite often this can be accomplished by perusing both ratings and review texts, since it is the latter where the reasoning for specific preferences is explicitly expressed. Unfortunately matrix factorization approaches to recommendation result in large, complex models that are difficult to interpret and give recommendations that are hard to clearly explain to users. In contrast, in this paper, we attack this problem through succinct additive co-clustering. We devise a novel Bayesian technique for summing co-clusterings of Poisson distributions. With this novel technique we propose a new Bayesian model for joint collaborative filtering of ratings and text reviews through a sum of simple co-clusterings. The simple structure of our model yields easily interpretable recommendations. Even with a simple, succinct structure, our model outperforms competitors in terms of predicting ratings with reviews.
- We study distributed stochastic convex optimization under the delayed gradient model where the server nodes perform parameter updates, while the worker nodes compute stochastic gradients. We discuss, analyze, and experiment with a setup motivated by the behavior of real-world distributed computation networks, where the machines are differently slow at different time. Therefore, we allow the parameter updates to be sensitive to the actual delays experienced, rather than to worst-case bounds on the maximum delay. This sensitivity leads to larger stepsizes, that can help gain rapid initial convergence without having to wait too long for slower machines, while maintaining the same asymptotic complexity. We obtain encouraging improvements to overall convergence for distributed experiments on real datasets with up to billions of examples and features.
- We study optimization algorithms based on variance reduction for stochastic gradient descent (SGD). Remarkable recent progress has been made in this direction through development of algorithms like SAG, SVRG, SAGA. These algorithms have been shown to outperform SGD, both theoretically and empirically. However, asynchronous versions of these algorithms---a crucial requirement for modern large-scale applications---have not been studied. We bridge this gap by presenting a unifying framework for many variance reduction techniques. Subsequently, we propose an asynchronous algorithm grounded in our framework, and prove its fast convergence. An important consequence of our general approach is that it yields asynchronous versions of variance reduction algorithms such as SVRG and SAGA as a byproduct. Our method achieves near linear speedup in sparse settings common to machine learning. We demonstrate the empirical performance of our method through a concrete realization of asynchronous SVRG.
- Tensor CANDECOMP/PARAFAC (CP) decomposition has wide applications in statistical learning of latent variable models and in data mining. In this paper, we propose fast and randomized tensor CP decomposition algorithms based on sketching. We build on the idea of count sketches, but introduce many novel ideas which are unique to tensors. We develop novel methods for randomized computation of tensor contractions via FFTs, without explicitly forming the tensors. Such tensor contractions are encountered in decomposition methods such as tensor power iterations and alternating least squares. We also design novel colliding hashes for symmetric tensors to further save time in computing the sketches. We then combine these sketching ideas with existing whitening and tensor power iterative techniques to obtain the fastest algorithm on both sparse and dense tensors. The quality of approximation under our method does not depend on properties such as sparsity, uniformity of elements, etc. We apply the method for topic modeling and obtain competitive results.
- We consider the problem of Bayesian learning on sensitive datasets and present two simple but somewhat surprising results that connect Bayesian learning to "differential privacy:, a cryptographic approach to protect individual-level privacy while permiting database-level utility. Specifically, we show that that under standard assumptions, getting one single sample from a posterior distribution is differentially private "for free". We will see that estimator is statistically consistent, near optimal and computationally tractable whenever the Bayesian model of interest is consistent, optimal and tractable. Similarly but separately, we show that a recent line of works that use stochastic gradient for Hybrid Monte Carlo (HMC) sampling also preserve differentially privacy with minor or no modifications of the algorithmic procedure at all, these observations lead to an "anytime" algorithm for Bayesian learning under privacy constraint. We demonstrate that it performs much better than the state-of-the-art differential private methods on synthetic and real datasets.
- Matrix completion and approximation are popular tools to capture a user's preferences for recommendation and to approximate missing data. Instead of using low-rank factorization we take a drastically different approach, based on the simple insight that an additive model of co-clusterings allows one to approximate matrices efficiently. This allows us to build a concise model that, per bit of model learned, significantly beats all factorization approaches to matrix approximation. Even more surprisingly, we find that summing over small co-clusterings is more effective in modeling matrices than classic co-clustering, which uses just one large partitioning of the matrix. Following Occam's razor principle suggests that the simple structure induced by our model better captures the latent preferences and decision making processes present in the real world than classic co-clustering or matrix factorization. We provide an iterative minimization algorithm, a collapsed Gibbs sampler, theoretical guarantees for matrix approximation, and excellent empirical evidence for the efficacy of our approach. We achieve state-of-the-art results on the Netflix problem with a fraction of the model complexity.
- The fully connected layers of a deep convolutional neural network typically contain over 90% of the network parameters, and consume the majority of the memory required to store the network parameters. Reducing the number of parameters while preserving essentially the same predictive performance is critically important for operating deep neural networks in memory constrained environments such as GPUs or embedded devices. In this paper we show how kernel methods, in particular a single Fastfood layer, can be used to replace all fully connected layers in a deep convolutional neural network. This novel Fastfood layer is also end-to-end trainable in conjunction with convolutional layers, allowing us to combine them into a new architecture, named deep fried convolutional networks, which substantially reduces the memory footprint of convolutional networks trained on MNIST and ImageNet with no drop in predictive performance.
- Kernel methods have great promise for learning rich statistical representations of large modern datasets. However, compared to neural networks, kernel methods have been perceived as lacking in scalability and flexibility. We introduce a family of fast, flexible, lightly parametrized and general purpose kernel learning methods, derived from Fastfood basis function expansions. We provide mechanisms to learn the properties of groups of spectral frequencies in these expansions, which require only O(mlogd) time and O(m) memory, for m basis functions and d input dimensions. We show that the proposed methods can learn a wide class of kernels, outperforming the alternatives in accuracy, speed, and memory consumption.
- We introduce a family of adaptive estimators on graphs, based on penalizing the $\ell_1$ norm of discrete graph differences. This generalizes the idea of trend filtering [Kim et al. (2009), Tibshirani (2014)], used for univariate nonparametric regression, to graphs. Analogous to the univariate case, graph trend filtering exhibits a level of local adaptivity unmatched by the usual $\ell_2$-based graph smoothers. It is also defined by a convex minimization problem that is readily solved (e.g., by fast ADMM or Newton algorithms). We demonstrate the merits of graph trend filtering through examples and theory.
- Despite their successes, what makes kernel methods difficult to use in many large scale problems is the fact that storing and computing the decision function is typically expensive, especially at prediction time. In this paper, we overcome this difficulty by proposing Fastfood, an approximation that accelerates such computation significantly. Key to Fastfood is the observation that Hadamard matrices, when combined with diagonal Gaussian matrices, exhibit properties similar to dense Gaussian random matrices. Yet unlike the latter, Hadamard and diagonal matrices are inexpensive to multiply and store. These two matrices can be used in lieu of Gaussian matrices in Random Kitchen Sinks proposed by Rahimi and Recht (2009) and thereby speeding up the computation for a large range of kernel functions. Specifically, Fastfood requires O(n log d) time and O(n) storage to compute n non-linear basis functions in d dimensions, a significant improvement from O(nd) computation and storage, without sacrificing accuracy. Our method applies to any translation invariant and any dot-product kernel, such as the popular RBF kernels and polynomial kernels. We prove that the approximation is unbiased and has low variance. Experiments show that we achieve similar accuracy to full kernel expansions and Random Kitchen Sinks while being 100x faster and using 1000x less memory. These improvements, especially in terms of memory usage, make kernel methods more practical for applications that have large training sets and/or require real-time prediction.
- May 06 2014 stat.ML arXiv:1405.0558v2We study a novel spline-like basis, which we name the "falling factorial basis", bearing many similarities to the classic truncated power basis. The advantage of the falling factorial basis is that it enables rapid, linear-time computations in basis matrix multiplication and basis matrix inversion. The falling factorial functions are not actually splines, but are close enough to splines that they provably retain some of the favorable properties of the latter functions. We examine their application in two problems: trend filtering over arbitrary input points, and a higher-order variant of the two-sample Kolmogorov-Smirnov test.
- Classical methods such as Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) are ubiquitous in statistics. However, these techniques are only able to reveal linear relationships in data. Although nonlinear variants of PCA and CCA have been proposed, these are computationally prohibitive in the large scale. In a separate strand of recent research, randomized methods have been proposed to construct features that help reveal nonlinear patterns in data. For basic tasks such as regression or classification, random features exhibit little or no loss in performance, while achieving drastic savings in computational requirements. In this paper we leverage randomness to design scalable new variants of nonlinear PCA and CCA; our ideas extend to key multivariate analysis tools such as spectral clustering or LDA. We demonstrate our algorithms through experiments on real-world data, on which we compare against the state-of-the-art. A simple R implementation of the presented algorithms is provided.
- In this paper we de ne conditional random elds in reproducing kernel Hilbert spaces and show connections to Gaussian Process classi cation. More speci cally, we prove decomposition results for undirected graphical models and we give constructions for kernels. Finally we present e cient means of solving the optimization problem using reduced rank decompositions and we show how stationarity can be exploited e ciently in the optimization process.
- This paper analyzes the problem of Gaussian process (GP) bandits with deterministic observations. The analysis uses a branch and bound algorithm that is related to the UCB algorithm of (Srinivas et al, 2010). For GPs with Gaussian observation noise, with variance strictly greater than zero, Srinivas et al proved that the regret vanishes at the approximate rate of $O(1/\sqrt{t})$, where t is the number of observations. To complement their result, we attack the deterministic case and attain a much faster exponential convergence rate. Under some regularity assumptions, we show that the regret decreases asymptotically according to $O(e^{-\frac{\tau t}{(\ln t)^{d/4}}})$ with high probability. Here, d is the dimension of the search space and tau is a constant that depends on the behaviour of the objective function near its global maximum.
- We extend the herding algorithm to continuous spaces by using the kernel trick. The resulting "kernel herding" algorithm is an infinite memory deterministic process that learns to approximate a PDF with a collection of samples. We show that kernel herding decreases the error of expectations of functions in the Hilbert space at a rate O(1/T) which is much faster than the usual O(1/pT) for iid random samples. We illustrate kernel herding by approximating Bayesian predictive distributions.
- This paper analyses the problem of Gaussian process (GP) bandits with deterministic observations. The analysis uses a branch and bound algorithm that is related to the UCB algorithm of (Srinivas et al., 2010). For GPs with Gaussian observation noise, with variance strictly greater than zero, (Srinivas et al., 2010) proved that the regret vanishes at the approximate rate of $O(\frac{1}{\sqrt{t}})$, where t is the number of observations. To complement their result, we attack the deterministic case and attain a much faster exponential convergence rate. Under some regularity assumptions, we show that the regret decreases asymptotically according to $O(e^{-\frac{\tau t}{(\ln t)^{d/4}}})$ with high probability. Here, d is the dimension of the search space and $\tau$ is a constant that depends on the behaviour of the objective function near its global maximum.
- Online learning algorithms have impressive convergence properties when it comes to risk minimization and convex games on very large problems. However, they are inherently sequential in their design which prevents them from taking advantage of modern multi-core architectures. In this paper we prove that online learning with delayed updates converges well, thereby facilitating parallel online learning.
- We review machine learning methods employing positive definite kernels. These methods formulate learning and estimation problems in a reproducing kernel Hilbert space (RKHS) of functions defined on the data domain, expanded in terms of a kernel. Working in linear spaces of function has the benefit of facilitating the construction and analysis of learning algorithms while at the same time allowing large classes of functions. The latter include nonlinear functions as well as functions defined on nonvectorial data. We cover a wide range of methods, ranging from binary classifiers to sophisticated methods for estimation with structured data.