results for au:Smola_A in:cs

- Knowledge bases (KB), both automatically and manually constructed, are often incomplete --- many valid facts can be inferred from the KB by synthesizing existing information. A popular approach to KB completion is to infer new relations by combinatory reasoning over the information found along other paths connecting a pair of entities. Given the enormous size of KBs and the exponential number of paths, previous path-based models have considered only the problem of predicting a missing relation given two entities or evaluating the truth of a proposed triple. Additionally, these methods have traditionally used random paths between fixed entity pairs or more recently learned to pick paths between them. We propose a new algorithm MINERVA, which addresses the much more difficult and practical task of answering questions where the relation is known, but only one entity. Since random walks are impractical in a setting with combinatorially many destinations from a start node, we present a neural reinforcement learning approach which learns how to navigate the graph conditioned on the input query to find predictive paths. Empirically, this approach obtains state-of-the-art results on several datasets, significantly outperforming prior methods.
- Knowledge graph (KG) is known to be helpful for the task of question answering (QA), since it provides well-structured relational information between entities, and allows one to further infer indirect facts. However, it is challenging to build QA systems which can learn to reason over knowledge graphs based on question-answer pairs alone. First, when people ask questions, their expressions are noisy (for example, typos in texts, or variations in pronunciations), which is non-trivial for the QA system to match those mentioned entities to the knowledge graph. Second, many questions require multi-hop logic reasoning over the knowledge graph to retrieve the answers. To address these challenges, we propose a novel and unified deep learning architecture, and an end-to-end variational learning algorithm which can handle noise in questions, and learn multi-hop reasoning simultaneously. Our method achieves state-of-the-art performance on a recent benchmark dataset in the literature. We also derive a series of new benchmark datasets, including questions for multi-hop reasoning, questions paraphrased by neural translation model, and questions in human voice. Our method yields very promising results on all these challenging datasets.
- A central challenge to using first-order methods for optimizing nonconvex problems is the presence of saddle points. First-order methods often get stuck at saddle points, greatly deteriorating their performance. Typically, to escape from saddles one has to use second-order methods. However, most works on second-order methods rely extensively on expensive Hessian-based computations, making them impractical in large-scale settings. To tackle this challenge, we introduce a generic framework that minimizes Hessian based computations while at the same time provably converging to second-order critical points. Our framework carefully alternates between a first-order and a second-order subroutine, using the latter only close to saddle points, and yields convergence results competitive to the state-of-the-art. Empirical results suggest that our strategy also enjoys a good practical performance.
- Jun 26 2017 cs.CV arXiv:1706.07567v1Deep embeddings answer one simple question: How similar are two images? Learning these embeddings is the bedrock of verification, zero-shot learning, and visual search. The most prominent approaches optimize a deep convolutional network with a suitable loss function, such as contrastive loss or triplet loss. While a rich line of work focuses solely on the loss functions, we show in this paper that selecting training examples plays an equally important role. We propose distance weighted sampling, which selects more informative and stable examples than traditional approaches. In addition, we show that a simple margin based loss is sufficient to outperform all other loss functions. We evaluate our approach on the Stanford Online Products, CAR196, and the CUB200-2011 datasets for image retrieval and clustering, and on the LFW dataset for face verification. Our method achieves state-of-the-art performance on all of them.
- Nonparametric models are versatile, albeit computationally expensive, tool for modeling mixture models. In this paper, we introduce spectral methods for the two most popular nonparametric models: the Indian Buffet Process (IBP) and the Hierarchical Dirichlet Process (HDP). We show that using spectral methods for the inference of nonparametric models are computationally and statistically efficient. In particular, we derive the lower-order moments of the IBP and the HDP, propose spectral algorithms for both models, and provide reconstruction guarantees for the algorithms. For the HDP, we further show that applying hierarchical models on dataset with hierarchical structure, which can be solved with the generalized spectral HDP, produces better solutions to that of flat models regarding likelihood performance.
- In this paper, we study the problem of designing objective functions for machine learning problems defined on finite \emphsets. In contrast to traditional objective functions defined for machine learning problems operating on finite dimensional vectors, the new objective functions we propose are operating on finite sets and are invariant to permutations. Such problems are widespread, ranging from estimation of population statistics \citeppoczos13aistats, via anomaly detection in piezometer data of embankment dams \citepJung15Exploration, to cosmology \citepNtampaka16Dynamical,Ravanbakhsh16ICML1. Our main theorem characterizes the permutation invariant objective functions and provides a family of functions to which any permutation invariant objective function must belong. This family of functions has a special structure which enables us to design a deep network architecture that can operate on sets and which can be deployed on a variety of scenarios including both unsupervised and supervised learning tasks. We demonstrate the applicability of our method on population statistic estimation, point cloud classification, set expansion, and image tagging.
- Feb 28 2017 cs.LG arXiv:1702.08159v1F2F is a C++ library for large-scale machine learning. It contains a CPU optimized implementation of the Fastfood algorithm, that allows the computation of approximated kernel expansions in loglinear time. The algorithm requires to compute the product of Walsh-Hadamard Transform (WHT) matrices. A cache friendly SIMD Fast Walsh-Hadamard Transform (FWHT) that achieves compelling speed and outperforms current state-of-the-art methods has been developed. F2F allows to obtain non-linear classification combining Fastfood and a linear classifier.
- Feb 28 2017 cs.CV arXiv:1702.08160v1We propose a novel approach to address the Simultaneous Detection and Segmentation problem. Using hierarchical structures we use an efficient and accurate procedure that exploits the hierarchy feature information using Locality Sensitive Hashing. We build on recent work that utilizes convolutional neural networks to detect bounding boxes in an image (Faster R-CNN) and then use the top similar hierarchical region that best fits each bounding box after hashing, we call this approach HashBox. We then refine our final segmentation results by automatic hierarchy pruning. HashBox introduces a train-free alternative to Hypercolumns. We conduct extensive experiments on Pascal VOC 2012 segmentation dataset, showing that HashBox gives competitive state-of-the-art object segmentations.
- In this paper we propose a multi-convex framework for multi-task learning that improves predictions by learning relationships both between tasks and between features. Our framework is a generalization of related methods in multi-task learning, that either learn task relationships, or feature relationships, but not both. We start with a hierarchical Bayesian model, and use the empirical Bayes method to transform the underlying inference problem into a multi-convex optimization problem. We propose a coordinate-wise minimization algorithm that has a closed form solution for each block subproblem. Naively these solutions would be expensive to compute, but by using the theory of doubly stochastic matrices, we are able to reduce the underlying matrix optimization subproblem into a minimum weight perfect matching problem on a complete bipartite graph, and solve it analytically and efficiently. To solve the weight learning subproblem, we propose three different strategies, including a gradient descent method with linear convergence guarantee when the instances are not shared by multiple tasks, and a numerical solution based on Sylvester equation when instances are shared. We demonstrate the efficiency of our method on both synthetic datasets and real-world datasets. Experiments show that the proposed optimization method is orders of magnitude faster than an off-the-shelf projected gradient method, and our model is able to exploit the correlation structures among multiple tasks and features.
- We propose a method to optimize the representation and distinguishability of samples from two probability distributions, by maximizing the estimated power of a statistical test based on the maximum mean discrepancy (MMD). This optimized MMD is applied to the setting of unsupervised learning by generative adversarial networks (GAN), in which a model attempts to generate realistic samples, and a discriminator attempts to tell these apart from data samples. In this context, the MMD may be used in two roles: first, as a discriminator, either directly on the samples, or on features of the samples. Second, the MMD can be used to evaluate the performance of a generative model, by testing the model's samples against a reference data set. In the latter role, the optimized MMD is particularly helpful, as it gives an interpretable indication of how the model and data distributions differ, even in cases where individual model samples are not easily distinguished either by eye or by classifier.
- In this paper we describe an algorithm for estimating the provenance of hacks on websites. That is, given properties of sites and the temporal occurrence of attacks, we are able to attribute individual attacks to joint causes and vulnerabilities, as well as estimating the evolution of these vulnerabilities over time. Specifically, we use hazard regression with a time-varying additive hazard function parameterized in a generalized linear form. The activation coefficients on each feature are continuous-time functions over time. We formulate the problem of learning these functions as a constrained variational maximum likelihood estimation problem with total variation penalty and show that the optimal solution is a 0th order spline (a piecewise constant function) with a finite number of known knots. This allows the inference problem to be solved efficiently and at scale by solving a finite dimensional optimization problem. Extensive experiments on real data sets show that our method significantly outperforms Cox's proportional hazard model. We also conduct a case study and verify that the fitted functions are indeed recovering vulnerable features and real-life events such as the release of code to exploit these features in hacker blogs.
- In this paper, we present two new communication-efficient methods for distributed minimization of an average of functions. The first algorithm is an inexact variant of the DANE algorithm that allows any local algorithm to return an approximate solution to a local subproblem. We show that such a strategy does not affect the theoretical guarantees of DANE significantly. In fact, our approach can be viewed as a robustification strategy since the method is substantially better behaved than DANE on data partition arising in practice. It is well known that DANE algorithm does not match the communication complexity lower bounds. To bridge this gap, we propose an accelerated variant of the first method, called AIDE, that not only matches the communication lower bounds but can also be implemented using a purely first-order oracle. Our empirical results show that AIDE is superior to other communication efficient algorithms in settings that naturally arise in machine learning applications.
- We study Frank-Wolfe methods for nonconvex stochastic and finite-sum optimization problems. Frank-Wolfe methods (in the convex case) have gained tremendous recent interest in machine learning and optimization communities due to their projection-free property and their ability to exploit structured constraints. However, our understanding of these algorithms in the nonconvex setting is fairly limited. In this paper, we propose nonconvex stochastic Frank-Wolfe methods and analyze their convergence properties. For objective functions that decompose into a finite-sum, we leverage ideas from variance reduction techniques for convex optimization to obtain new variance reduced nonconvex Frank-Wolfe methods that have provably faster convergence than the classical Frank-Wolfe method. Finally, we show that the faster convergence rates of our variance reduced methods also translate into improved convergence rates for the stochastic setting.
- Knowing which words have been attended to in previous time steps while generating a translation is a rich source of information for predicting what words will be attended to in the future. We improve upon the attention model of Bahdanau et al. (2014) by explicitly modeling the relationship between previous and subsequent attention levels for each word using one recurrent network per input word. This architecture easily captures informative features, such as fertility and regularities in relative distortion. In experiments, we show our parameterization of attention improves translation quality.
- We analyze stochastic algorithms for optimizing nonconvex, nonsmooth finite-sum problems, where the nonconvex part is smooth and the nonsmooth part is convex. Surprisingly, unlike the smooth case, our knowledge of this fundamental problem is very limited. For example, it is not known whether the proximal stochastic gradient method with constant minibatch converges to a stationary point. To tackle this issue, we develop fast stochastic algorithms that provably converge to a stationary point for constant minibatches. Furthermore, using a variant of these algorithms, we show provably faster convergence than batch proximal gradient descent. Finally, we prove global linear convergence rate for an interesting subclass of nonsmooth nonconvex functions, that subsumes several recent works. This paper builds upon our recent series of papers on fast stochastic methods for smooth nonconvex optimization [22, 23], with a novel analysis for nonconvex and nonsmooth functions.
- We analyze a fast incremental aggregated gradient method for optimizing nonconvex problems of the form $\min_x \sum_i f_i(x)$. Specifically, we analyze the SAGA algorithm within an Incremental First-order Oracle framework, and show that it converges to a stationary point provably faster than both gradient descent and stochastic gradient descent. We also discuss a Polyak's special class of nonconvex problems for which SAGA converges at a linear rate to the global optimum. Finally, we analyze the practically valuable regularized and minibatch variants of SAGA. To our knowledge, this paper presents the first analysis of fast convergence for an incremental aggregated gradient method for nonconvex problems.
- We study nonconvex finite-sum problems and analyze stochastic variance reduced gradient (SVRG) methods for them. SVRG and related methods have recently surged into prominence for convex optimization given their edge over stochastic gradient descent (SGD); but their theoretical analysis almost exclusively assumes convexity. In contrast, we prove non-asymptotic rates of convergence (to stationary points) of SVRG for nonconvex optimization, and show that it is provably faster than SGD and gradient descent. We also analyze a subclass of nonconvex problems on which SVRG attains linear convergence to the global optimum. We extend our analysis to mini-batch variants of SVRG, showing (theoretical) linear speedup due to mini-batching in parallel settings.
- In distributed machine learning, data is dispatched to multiple machines for processing. Motivated by the fact that similar data points often belong to the same or similar classes, and more generally, classification rules of high accuracy tend to be "locally simple but globally complex" (Vapnik & Bottou 1993), we propose data dependent dispatching that takes advantage of such structure. We present an in-depth analysis of this model, providing new algorithms with provable worst-case guarantees, analysis proving existing scalable heuristics perform well in natural non worst-case conditions, and techniques for extending a dispatching rule from a small sample to the entire distribution. We overcome novel technical challenges to satisfy important conditions for accurate distributed learning, including fault tolerance and balancedness. We empirically compare our approach with baselines based on random partitioning, balanced partition trees, and locality sensitive hashing, showing that we achieve significantly higher accuracy on both synthetic and real world image and advertising datasets. We also demonstrate that our technique strongly scales with the available computing power.
- Understanding a user's motivations provides valuable information beyond the ability to recommend items. Quite often this can be accomplished by perusing both ratings and review texts, since it is the latter where the reasoning for specific preferences is explicitly expressed. Unfortunately matrix factorization approaches to recommendation result in large, complex models that are difficult to interpret and give recommendations that are hard to clearly explain to users. In contrast, in this paper, we attack this problem through succinct additive co-clustering. We devise a novel Bayesian technique for summing co-clusterings of Poisson distributions. With this novel technique we propose a new Bayesian model for joint collaborative filtering of ratings and text reviews through a sum of simple co-clusterings. The simple structure of our model yields easily interpretable recommendations. Even with a simple, succinct structure, our model outperforms competitors in terms of predicting ratings with reviews.
- This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer.
- We study distributed stochastic convex optimization under the delayed gradient model where the server nodes perform parameter updates, while the worker nodes compute stochastic gradients. We discuss, analyze, and experiment with a setup motivated by the behavior of real-world distributed computation networks, where the machines are differently slow at different time. Therefore, we allow the parameter updates to be sensitive to the actual delays experienced, rather than to worst-case bounds on the maximum delay. This sensitivity leads to larger stepsizes, that can help gain rapid initial convergence without having to wait too long for slower machines, while maintaining the same asymptotic complexity. We obtain encouraging improvements to overall convergence for distributed experiments on real datasets with up to billions of examples and features.
- We study optimization algorithms based on variance reduction for stochastic gradient descent (SGD). Remarkable recent progress has been made in this direction through development of algorithms like SAG, SVRG, SAGA. These algorithms have been shown to outperform SGD, both theoretically and empirically. However, asynchronous versions of these algorithms---a crucial requirement for modern large-scale applications---have not been studied. We bridge this gap by presenting a unifying framework for many variance reduction techniques. Subsequently, we propose an asynchronous algorithm grounded in our framework, and prove its fast convergence. An important consequence of our general approach is that it yields asynchronous versions of variance reduction algorithms such as SVRG and SAGA as a byproduct. Our method achieves near linear speedup in sparse settings common to machine learning. We demonstrate the empirical performance of our method through a concrete realization of asynchronous SVRG.
- Tensor CANDECOMP/PARAFAC (CP) decomposition has wide applications in statistical learning of latent variable models and in data mining. In this paper, we propose fast and randomized tensor CP decomposition algorithms based on sketching. We build on the idea of count sketches, but introduce many novel ideas which are unique to tensors. We develop novel methods for randomized computation of tensor contractions via FFTs, without explicitly forming the tensors. Such tensor contractions are encountered in decomposition methods such as tensor power iterations and alternating least squares. We also design novel colliding hashes for symmetric tensors to further save time in computing the sketches. We then combine these sketching ideas with existing whitening and tensor power iterative techniques to obtain the fastest algorithm on both sparse and dense tensors. The quality of approximation under our method does not depend on properties such as sparsity, uniformity of elements, etc. We apply the method for topic modeling and obtain competitive results.
- Distributed computing excels at processing large scale data, but the communication cost for synchronizing the shared parameters may slow down the overall performance. Fortunately, the interactions between parameter and data in many problems are sparse, which admits efficient partition in order to reduce the communication overhead. In this paper, we formulate data placement as a graph partitioning problem. We propose a distributed partitioning algorithm. We give both theoretical guarantees and a highly efficient implementation. We also provide a highly efficient implementation of the algorithm and demonstrate its promising results on both text datasets and social networks. We show that the proposed algorithm leads to 1.6x speedup of a state-of-the-start distributed machine learning system by eliminating 90\% of the network communication.
- Differentially private collaborative filtering is a challenging task, both in terms of accuracy and speed. We present a simple algorithm that is provably differentially private, while offering good performance, using a novel connection of differential privacy to Bayesian posterior sampling via Stochastic Gradient Langevin Dynamics. Due to its simplicity the algorithm lends itself to efficient implementation. By careful systems design and by exploiting the power law behavior of the data to maximize CPU cache bandwidth we are able to generate 1024 dimensional models at a rate of 8.5 million recommendations per second on a single PC.
- We consider the problem of Bayesian learning on sensitive datasets and present two simple but somewhat surprising results that connect Bayesian learning to "differential privacy:, a cryptographic approach to protect individual-level privacy while permiting database-level utility. Specifically, we show that that under standard assumptions, getting one single sample from a posterior distribution is differentially private "for free". We will see that estimator is statistically consistent, near optimal and computationally tractable whenever the Bayesian model of interest is consistent, optimal and tractable. Similarly but separately, we show that a recent line of works that use stochastic gradient for Hybrid Monte Carlo (HMC) sampling also preserve differentially privacy with minor or no modifications of the algorithmic procedure at all, these observations lead to an "anytime" algorithm for Bayesian learning under privacy constraint. We demonstrate that it performs much better than the state-of-the-art differential private methods on synthetic and real datasets.
- Matrix completion and approximation are popular tools to capture a user's preferences for recommendation and to approximate missing data. Instead of using low-rank factorization we take a drastically different approach, based on the simple insight that an additive model of co-clusterings allows one to approximate matrices efficiently. This allows us to build a concise model that, per bit of model learned, significantly beats all factorization approaches to matrix approximation. Even more surprisingly, we find that summing over small co-clusterings is more effective in modeling matrices than classic co-clustering, which uses just one large partitioning of the matrix. Following Occam's razor principle suggests that the simple structure induced by our model better captures the latent preferences and decision making processes present in the real world than classic co-clustering or matrix factorization. We provide an iterative minimization algorithm, a collapsed Gibbs sampler, theoretical guarantees for matrix approximation, and excellent empirical evidence for the efficacy of our approach. We achieve state-of-the-art results on the Netflix problem with a fraction of the model complexity.
- The fully connected layers of a deep convolutional neural network typically contain over 90% of the network parameters, and consume the majority of the memory required to store the network parameters. Reducing the number of parameters while preserving essentially the same predictive performance is critically important for operating deep neural networks in memory constrained environments such as GPUs or embedded devices. In this paper we show how kernel methods, in particular a single Fastfood layer, can be used to replace all fully connected layers in a deep convolutional neural network. This novel Fastfood layer is also end-to-end trainable in conjunction with convolutional layers, allowing us to combine them into a new architecture, named deep fried convolutional networks, which substantially reduces the memory footprint of convolutional networks trained on MNIST and ImageNet with no drop in predictive performance.
- Kernel methods have great promise for learning rich statistical representations of large modern datasets. However, compared to neural networks, kernel methods have been perceived as lacking in scalability and flexibility. We introduce a family of fast, flexible, lightly parametrized and general purpose kernel learning methods, derived from Fastfood basis function expansions. We provide mechanisms to learn the properties of groups of spectral frequencies in these expansions, which require only O(mlogd) time and O(m) memory, for m basis functions and d input dimensions. We show that the proposed methods can learn a wide class of kernels, outperforming the alternatives in accuracy, speed, and memory consumption.
- We introduce a family of adaptive estimators on graphs, based on penalizing the $\ell_1$ norm of discrete graph differences. This generalizes the idea of trend filtering [Kim et al. (2009), Tibshirani (2014)], used for univariate nonparametric regression, to graphs. Analogous to the univariate case, graph trend filtering exhibits a level of local adaptivity unmatched by the usual $\ell_2$-based graph smoothers. It is also defined by a convex minimization problem that is readily solved (e.g., by fast ADMM or Newton algorithms). We demonstrate the merits of graph trend filtering through examples and theory.
- Despite their successes, what makes kernel methods difficult to use in many large scale problems is the fact that storing and computing the decision function is typically expensive, especially at prediction time. In this paper, we overcome this difficulty by proposing Fastfood, an approximation that accelerates such computation significantly. Key to Fastfood is the observation that Hadamard matrices, when combined with diagonal Gaussian matrices, exhibit properties similar to dense Gaussian random matrices. Yet unlike the latter, Hadamard and diagonal matrices are inexpensive to multiply and store. These two matrices can be used in lieu of Gaussian matrices in Random Kitchen Sinks proposed by Rahimi and Recht (2009) and thereby speeding up the computation for a large range of kernel functions. Specifically, Fastfood requires O(n log d) time and O(n) storage to compute n non-linear basis functions in d dimensions, a significant improvement from O(nd) computation and storage, without sacrificing accuracy. Our method applies to any translation invariant and any dot-product kernel, such as the popular RBF kernels and polynomial kernels. We prove that the approximation is unbiased and has low variance. Experiments show that we achieve similar accuracy to full kernel expansions and Random Kitchen Sinks while being 100x faster and using 1000x less memory. These improvements, especially in terms of memory usage, make kernel methods more practical for applications that have large training sets and/or require real-time prediction.
- Classical methods such as Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) are ubiquitous in statistics. However, these techniques are only able to reveal linear relationships in data. Although nonlinear variants of PCA and CCA have been proposed, these are computationally prohibitive in the large scale. In a separate strand of recent research, randomized methods have been proposed to construct features that help reveal nonlinear patterns in data. For basic tasks such as regression or classification, random features exhibit little or no loss in performance, while achieving drastic savings in computational requirements. In this paper we leverage randomness to design scalable new variants of nonlinear PCA and CCA; our ideas extend to key multivariate analysis tools such as spectral clustering or LDA. We demonstrate our algorithms through experiments on real-world data, on which we compare against the state-of-the-art. A simple R implementation of the presented algorithms is provided.
- We describe Hokusai, a real time system which is able to capture frequency information for streams of arbitrary sequences of symbols. The algorithm uses the CountMin sketch as its basis and exploits the fact that sketching is linear. It provides real time statistics of arbitrary events, e.g. streams of queries as a function of time. We use a factorizing approximation to provide point estimates at arbitrary (time, item) combinations. Queries can be answered in constant time.
- In this paper we de ne conditional random elds in reproducing kernel Hilbert spaces and show connections to Gaussian Process classi cation. More speci cally, we prove decomposition results for undirected graphical models and we give constructions for kernels. Finally we present e cient means of solving the optimization problem using reduced rank decompositions and we show how stationarity can be exploited e ciently in the optimization process.
- This paper analyzes the problem of Gaussian process (GP) bandits with deterministic observations. The analysis uses a branch and bound algorithm that is related to the UCB algorithm of (Srinivas et al, 2010). For GPs with Gaussian observation noise, with variance strictly greater than zero, Srinivas et al proved that the regret vanishes at the approximate rate of $O(1/\sqrt{t})$, where t is the number of observations. To complement their result, we attack the deterministic case and attain a much faster exponential convergence rate. Under some regularity assumptions, we show that the regret decreases asymptotically according to $O(e^{-\frac{\tau t}{(\ln t)^{d/4}}})$ with high probability. Here, d is the dimension of the search space and tau is a constant that depends on the behaviour of the objective function near its global maximum.
- We extend the herding algorithm to continuous spaces by using the kernel trick. The resulting "kernel herding" algorithm is an infinite memory deterministic process that learns to approximate a PDF with a collection of samples. We show that kernel herding decreases the error of expectations of functions in the Hilbert space at a rate O(1/T) which is much faster than the usual O(1/pT) for iid random samples. We illustrate kernel herding by approximating Bayesian predictive distributions.
- This paper analyses the problem of Gaussian process (GP) bandits with deterministic observations. The analysis uses a branch and bound algorithm that is related to the UCB algorithm of (Srinivas et al., 2010). For GPs with Gaussian observation noise, with variance strictly greater than zero, (Srinivas et al., 2010) proved that the regret vanishes at the approximate rate of $O(\frac{1}{\sqrt{t}})$, where t is the number of observations. To complement their result, we attack the deterministic case and attain a much faster exponential convergence rate. Under some regularity assumptions, we show that the regret decreases asymptotically according to $O(e^{-\frac{\tau t}{(\ln t)^{d/4}}})$ with high probability. Here, d is the dimension of the search space and $\tau$ is a constant that depends on the behaviour of the objective function near its global maximum.
- Mar 23 2011 cs.LG arXiv:1103.4204v1In this work we study parallelization of online learning, a core primitive in machine learning. In a parallel environment all known approaches for parallel online learning lead to delayed updates, where the model is updated using out-of-date information. In the worst case, or when examples are temporally correlated, delay can have a very adverse effect on the learning algorithm. Here, we analyze and present preliminary empirical results on a set of learning architectures based on a feature sharding approach that present various tradeoffs between delay, degree of parallelism, representation power and empirical performance.
- Feb 13 2009 cs.AI arXiv:0902.2206v5Empirical evidence suggests that hashing is an effective strategy for dimensionality reduction and practical nonparametric estimation. In this paper we provide exponential tail bounds for feature hashing and show that the interaction between random subspaces is negligible with high probability. We demonstrate the feasibility of this approach with experimental results for a new use case -- multitask learning with hundreds of thousands of tasks.
- Models for near-rigid shape matching are typically based on distance-related features, in order to infer matches that are consistent with the isometric assumption. However, real shapes from image datasets, even when expected to be related by "almost isometric" transformations, are actually subject not only to noise but also, to some limited degree, to variations in appearance and scale. In this paper, we introduce a graphical model that parameterises appearance, distance, and angle features and we learn all of the involved parameters via structured prediction. The outcome is a model for near-rigid shape matching which is robust in the sense that it is able to capture the possibly limited but still important scale and appearance variations. Our experimental results reveal substantial improvements upon recent successful models, while maintaining similar running times.
- As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the `labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.
- We propose a framework for analyzing and comparing distributions, allowing us to design statistical tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS). We present two tests based on large deviation bounds for the test statistic, while a third is based on the asymptotic distribution of this statistic. The test statistic can be computed in quadratic time, although efficient linear time approximations are available. Several classical metrics on distributions are recovered when the function space used to compute the difference in expectations is allowed to be more general (eg. a Banach space). We apply our two-sample tests to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where they perform strongly. Excellent performance is also obtained when comparing distributions over graphs, for which these are the first such tests.
- Web page ranking and collaborative filtering require the optimization of sophisticated performance measures. Current Support Vector approaches are unable to optimize them directly and focus on pairwise comparisons instead. We present a new approach which allows direct optimization of the relevant loss functions. This is achieved via structured estimation in Hilbert spaces. It is most related to Max-Margin-Markov networks optimization of multivariate performance measures. Key to our approach is that during training the ranking problem can be viewed as a linear assignment problem, which can be solved by the Hungarian Marriage algorithm. At test time, a sort operation is sufficient, as our algorithm assigns a relevance score to every (document, query) pair. Experiments show that the our algorithm is fast and that it works very well.
- Apr 23 2007 cs.LG arXiv:0704.2668v1We introduce a framework for filtering features that employs the Hilbert-Schmidt Independence Criterion (HSIC) as a measure of dependence between the features and the labels. The key idea is that good features should maximise such dependence. Feature selection for various supervised learning problems (including classification and regression) is unified under this framework, and the solutions can be approximated using a backward-elimination algorithm. We demonstrate the usefulness of our method on both artificial and real world datasets.