results for au:Silberhorn_C in:quant-ph

- May 16 2018 quant-ph arXiv:1805.05881v1Detecting light is fundamental to all optical experiments and applications. At the single photon level, the quantised nature of light requires specialised detectors, which typically saturate for more than one photon, rendering the measurement of bright light impossible. Saturation can be partially overcome by multiplexing single-photon-sensitive detectors, enabling measurement up to tens of photons. However, current approaches are still far from bridging the gap to bright light levels. Here, we report on a massively-multiplexed single-photon detector, which exhibits a dynamic range of 123 dB, from optical energies as low as $\mathbf{10^{-7}}$ photons per pulse to $\mathbf{\sim2.5\times10^{5}}$ photons per pulse. This allows us to calibrate a single photon detector directly to a power meter. The use of a single-photon sensitive detector further allows us to characterise the nonclassical features of a variety of quantum states. This device will find application where high dynamic range and single-photon sensitivity are required.
- May 08 2018 quant-ph physics.optics arXiv:1805.02491v1By projecting onto complex optical mode profiles, it is possible to estimate arbitrarily small separations between objects with quantum-limited precision, free of uncertainty arising from overlapping intensity profiles. Here we extend these techniques to the time-frequency domain using mode-selective sum-frequency generation with shaped ultrafast pulses. We experimentally resolve temporal and spectral separations between incoherent mixtures of single-photon level signals ten times smaller than their optical bandwidths with a ten-fold improvement in precision over the intensity-only Cramér-Rao bound.
- Apr 26 2018 quant-ph arXiv:1804.09496v1Quantum anomalies lead to finite expectation values that defy the apparent symmetries of a system. These anomalies are at the heart of topological effects in fundamental, electronic, photonic and ultracold atomic systems, where they result in a unique response to external fields but generally escape a more direct observation. Here, we implement an optical-network realization of a topological discrete-time quantum walk (DTQW), which we design so that such an anomaly can be observed directly in the unique circular polarization of a topological midgap state. This feature arises in a single-step protocol that combines a chiral symmetry with a previously unexplored unitary version of supersymmetry. Having experimental access to the position and coin state of the walker, we perform a full polarization tomography and provide evidence for the predicted anomaly of the midgap states. This approach opens the prospect to distill topological states dynamically for classical and quantum information applications.
- Mar 14 2018 quant-ph arXiv:1803.04712v1Measurements on a quantum particle unavoidably affect its state, since the otherwise unitary evolution of the system is interrupted by a non-unitary projection operation. In order to probe measurement-induced effects in the state dynamics using a quantum simulator, the challenge is to implement controlled measurements on a small subspace of the system and continue the evolution from the complementary subspace. A powerful platform for versatile quantum evolution is represented by photonic quantum walks due to their high control over all relevant parameters. However, measurement-induced dynamics in such a platform have not yet been realized. Here we implement controlled measurements in a discrete-time quantum walk based on time multiplexing. This is achieved by adding a deterministic out-coupling of the optical signal to include measurements constrained to specific positions resulting in the projection of the walker's state on the remaining ones. With this platform and coherent input light we experimentally simulate measurement-induced single particle quantum dynamics. We demonstrate the difference between dynamics with only a single measurement at the final step and those including measurements during the evolution. To this aim we study recurrence as a figure of merit, i.e. the return probability to the walker's starting position, which is measured in the two cases. We track the development of the return probability over 36 time steps and observe the onset of both recurrent and transient evolution as an effect of the different measurement schemes, a signature which only emerges for quantum systems. Our simulation of the observed one particle conditional quantum dynamics does not require a genuine quantum particle but is demonstrated with coherent light.
- Mar 13 2018 quant-ph arXiv:1803.04316v1The time-frequency degree of freedom is a powerful resource for implementing high-dimensional quantum information processing. In particular, field-orthogonal pulsed temporal modes offer a flexible framework compatible with both long-distance fibre networks and integrated waveguide devices. In order for this architecture to be fully utilised, techniques to reliably generate diverse quantum states of light and accurately measure complex temporal waveforms must be developed. To this end, nonlinear processes mediated by spectrally shaped pump pulses in group-velocity engineered waveguides and crystals provide a capable toolbox. In this review, we examine how tailoring the phasematching conditions of parametric downconversion and sum-frequency generation allows for highly pure single-photon generation, flexible temporal-mode entanglement, and accurate measurement of time-frequency photon states. We provide an overview of experimental progress towards these goals, and summarise challenges that remain in the field.
- Jan 24 2018 quant-ph arXiv:1801.07488v1Since the development of Boson sampling, there has been a quest to construct more efficient and experimentally feasible protocols to test the computational complexity of sampling from photonic states. In this paper we interpret and extend the results presented in [Phys. Rev. Lett. 119, 170501 (2017)]. We derive an expression that relates the probability to measure a specific photon output pattern from a Gaussian state to the \textithafnian matrix function and us it to design a Gaussian Boson sampling protocol. Then, we discuss the advantages that this protocol has relative to other photonic protocols and the experimental requirements for Gaussian Boson Sampling. Finally, we relate it to the previously most general protocol, Scattershot Boson Sampling [Phys. Rev. Lett. 113, 100502 (2014)]
- Nov 30 2017 quant-ph arXiv:1711.10962v2We implement the direct sampling of negative phase-space functions via unbalanced homodyne measurement using click-counting detectors. The negativities significantly certify nonclassical light in the high-loss regime using a small number of detectors which cannot resolve individual photons. We apply our method to heralded single-photon states and experimentally demonstrate the most significant certification of nonclassicality for only two detection bins. By contrast, the frequently applied Wigner function fails to indicate such quantum characteristics for the quantum efficiencies present in our setup. In addition, it would require ideal photon-number resolution. Hence, we realize a robust, reliable, and resource-efficient approach to characterize nonclassical light in phase space under realistic conditions.
- Nov 28 2017 quant-ph arXiv:1711.09678v2We experimentally demonstrate a source of nearly pure single photons in arbitrary temporal shapes heralded from a parametric down-conversion (PDC) source at telecom wavelengths. The technology is enabled by the tailored dispersion of in-house fabricated waveguides with shaped pump pulses to directly generate the PDC photons in on-demand temporal shapes. We generate PDC photons in Hermite-Gauss and frequency-binned modes and confirm a minimum purity of 0.81, even for complex temporal shapes.
- We devise an all-optical scheme for the generation of entangled multimode photonic states encoded in temporal modes of light. The scheme employs a nonlinear down-conversion process in an optical loop to generate one- and higher-dimensional tensor network states of light. We illustrate the principle with the generation of two different classes of entangled tensor network states and report on a variational algorithm to simulate the ground-state physics of many-body systems. We demonstrate that state-of-the-art optical devices are capable of determining the ground-state properties of the spin-1/2 Heisenberg model. Finally, implementations of the scheme are demonstrated to be robust against realistic losses and mode mismatch.
- Aug 30 2017 quant-ph arXiv:1708.08463v1Quantum states and the modes of the optical field they occupy are intrinsically connected. Here, we show that one can trade the knowledge of a quantum state to gain information about the underlying mode structure and, vice versa, the knowledge about the modal shape allows one to perform a complete tomography of the quantum state. Our scheme can be executed experimentally using the interference between the signal and probe states on an unbalanced beam splitter with a single on/off-type detector. By changing the temporal overlap between the signal and the probe, the imperfect interference is turned into a powerful tool to extract the information about the signal mode structure. A single on/off detector is already sufficient to collect the necessary measurement data for the reconstruction of the diagonal part of the density matrix of an arbitrary multi-mode signal. Moreover, we experimentally demonstrate the feasibility of our scheme with just one control parameter -- the time-delay of a coherent probe field.
- Superconducting detectors are now well-established tools for low-light optics, and in particular quantum optics, boasting high-efficiency, fast response and low noise. Similarly, lithium niobate is an important platform for integrated optics given its high second-order nonlinearity, used for high-speed electro-optic modulation and polarization conversion, as well as frequency conversion and sources of quantum light. Combining these technologies addresses the requirements for a single platform capable of generating, manipulating and measuring quantum light in many degrees of freedom, in a compact and potentially scalable manner. We will report on progress integrating tungsten transition-edge sensors (TESs) and amorphous tungsten silicide superconducting nanowire single-photon detectors (SNSPDs) on titanium in-diffused lithium niobate waveguides. The travelling-wave design couples the evanescent field from the waveguides into the superconducting absorber. We will report on simulations and measurements of the absorption, which we can characterize at room temperature prior to cooling down the devices. Independently, we show how the detectors respond to flood illumination, normally incident on the devices, demonstrating their functionality.
- Jun 12 2017 quant-ph arXiv:1706.02871v2In this theoretical study we demonstrate that entangled states are able to significantly extend the functionality of Hong-Ou-Mandel (HOM) interferometers. By generating a coherent superposition of parametric-down-conversion photons and spatial entanglement in the input channel, the coincidence probability measured at the output changes from a typical HOM-type dip (photon bunching) into much richer patterns including an anti-bunching peak and rapid oscillation fringes with twice the optical frequency. The considered system should be realizable on a single chip using current waveguide technology in the $LiNbO_3$ platform.
- May 30 2017 quant-ph arXiv:1705.09734v1Efficient sources of many-partite non-classical states are key for the advancement of quantum technologies and for the fundamental testing of quantum mechanics. We demonstrate the generation of time-correlated photon triplets at telecom wavelengths via pulsed cascaded parametric down-conversion in a monolithically integrated source. By detecting the generated states with success probabilities of $(6.25\pm1.09)\times10^{-11}$ per pump pulse at injected powers as low as $10\;\mu\mathrm{W}$, we benchmark the efficiency of the complete system and deduce its high potential for scalability. Our source is unprecedentedly long-term stable, it overcomes interface losses intrinsically due to its monolithic architecture, and the photon-triplet states dominate uncorrelated noise significantly. These results mark crucial progress towards the proliferation of robust, scalable, synchronized and miniaturized quantum technology.
- Apr 20 2017 quant-ph physics.data-an arXiv:1704.05503v1We present a method to reconstruct the complete statistical mode structure and optical losses of multimode conjugated optical fields using an experimentally measured joint photon-number probability distribution. We demonstrate that this method evaluates classical and non-classical properties using a single measurement technique and is well-suited for quantum mesoscopic state characterization. We obtain a nearly-perfect reconstruction of a field comprised of up to 10 modes based on a minimal set of assumptions. To show the utility of this method, we use it to reconstruct the mode structure of an unknown bright parametric down-conversion source.
- Apr 14 2017 quant-ph arXiv:1704.04129v1Up to this point streak-cameras have been a powerful tool for temporal characterization of ultrafast light pulses even at the single photon level. However, the low signal-to-noise ratio in the infrared range prevents measurement on weak light sources in the telecom regime. We present an approach to circumvent this problem. The method utilizes an up-conversion process in periodically poled waveguides in Lithium Niobate. We convert single photons from a parametric down-conversion source in order to reach the point of maximum detection efficiency of commercially available streak-cameras. We explore phase-matching configurations to investigate the up-conversion scheme in real-world applications.
- Apr 13 2017 quant-ph arXiv:1704.03769v2We present and discuss perspectives of current developments on advanced quantum optical circuits monolithically integrated in the lithium niobate platform. A set of basic components comprising photon pair sources based on parametric down conversion (PDC), passive routing elements and active electro-optically controllable switches and polarisation converters are building blocks of a toolbox which is the basis for a broad range of diverse quantum circuits. We review the state-of-the-art of these components and provide models that properly describe their performance in quantum circuits. As an example for applications of these models we discuss design issues for a circuit providing on-chip two-photon interference. The circuit comprises a PDC section for photon pair generation followed by an actively controllable modified Mach-Zehnder structure for observing Hong-Ou-Mandel (HOM) interference. The performance of such a chip is simulated theoretically by taking even imperfections of the properties of the individual components into account.
- Feb 21 2017 quant-ph arXiv:1702.05501v3Photon pairs produced by parametric down-conversion or four-wave mixing can interfere with each other in multiport interferometers, or carry entanglement between distant nodes for use in entanglement swapping. This requires the photons be spectrally pure to ensure good interference, and have high heralding efficiency to know accurately the number of photons involved and to maintain high rates as the number of photons grows. Spectral filtering is often used to remove noise and define spectral properties. For heralded single photons high purity and heralding efficiency is possible by filtering the heralding arm, but when both photons in typical pair sources are filtered, we show that the heralding efficiency of one or both of the photons is strongly reduced even by ideal spectral filters with 100% transmission in the passband: any improvement in reduced-state spectral purity from filtering comes at the cost of lowered heralding efficiency. We consider the fidelity to a pure, lossless single photon, symmetrize it to include both photons of the pair, and show this quantity is intrinsically limited for sources with spectral correlation. We then provide a framework for this effect for benchmarking common photon pair sources, and present an experiment where we vary the photon filter bandwidths and measure the increase in purity and corresponding reduction in heralding efficiency.
- Feb 15 2017 quant-ph arXiv:1702.04127v2Atmospheric channels are a promising candidate to establish secure quantum communication on a global scale. However, due to their turbulent nature, it is crucial to understand the impact of the atmosphere on the quantum properties of light and examine it experimentally. In this paper, we introduce a method to probe atmospheric free-space links with quantum light on a laboratory scale. In contrast to previous works, our method models arbitrary intensity losses caused by turbulence to emulate general atmospheric conditions. This allows us to characterize turbulent quantum channels in a well-controlled manner. To implement this technique, we perform a series of measurements with different constant attenuations and simulate the fluctuating losses by combining the obtained data. We directly test the proposed method with an on-chip source of nonclassical light and a time-bin-multiplexed detection system. With the obtained data, we characterize the nonclassicality of the generated states for different atmospheric noise models and analyze a post-selection protocol. This general technique in atmospheric quantum optics allows for studying turbulent quantum channels and predicting their properties for future applications.
- We report on a highly efficient waveguide resonator device for the production of 775 nm light using a titanium indiffused LiNbO3waveguide resonator. When scanning the resonance the device produces up to 110 mW of second harmonic power with 140 mW incident on the device - an external conversion efficiency of 75 %. The cavity length is also locked, using a Pound-Drever-Hall type locking scheme, involving feedback to either the cavity temperature or the laser frequency. With laser frequency feedback a stable output power of approximately 28 mW from a 52 mW pump is seen over one hour.
- Feb 14 2017 quant-ph arXiv:1702.03336v3Encoding quantum information in the photon temporal mode (TM) offers a robust platform for high-dimensional quantum protocols. The main practical challenge, however, is to design a device that operates on single photons in specific TMs and all coherent superpositions. The quantum pulse gate (QPG) is a mode-selective sum-frequency generation designed for this task. Here, we perform a full modal characterisation of a QPG using weak coherent states in well-defined TMs. We reconstruct a full set of measurement operators, which show an average fidelity of 0.85 to a theoretically ideal device when operating on a 7-dimensional space. Then we use these characterised measurement operators of the QPG to calibrate the device. Using the calibrated device and a tomographically complete set of measurements, we show that the QPG can perform high-dimensional TM state tomography with 0.99 fidelity.
- Feb 13 2017 quant-ph arXiv:1702.03240v1Direct measurements on the temporal envelope of quantum light are a challenging task and not many examples are known since most classical pulse characterisation methods do not work on the single photon level. Knowledge of both spectrum and timing can however give insights on properties that cannot be determined by the spectrum alone. While temporal measurements on single photons on timescales of tens of picoseconds are possible with superconducting photon detectors and picosecond measurements have been performed using streak cameras, there are no commercial single photon sensitive devices with femtosecond resolution available. While time-domain sampling using sum-frequency generation has been already exploited for such measurement, inefficient conversion has necessitated long integration times to build the temporal profile. We demonstrate a highly efficient waveguided sum-frequency generation process in Lithium Niobate to measure the temporal envelope of single photons with femtosecond resolution with short enough acquisition time to provide a live-view of the measurement. We demonstrate the measurement technique and combine it with spectral measurements using a dispersive fiber time-of-flight spectrometer to determine upper and lower bounds for the spectral purity of heralded single photons. The approach complements the joint spectral intensity measurements as a measure on the purity can be given without knowledge of the spectral phase.
- Feb 10 2017 quant-ph arXiv:1702.02824v1Quantum nondemolition theory has been well understood for a number of decades, however, applications of such techniques remain limited owing to the increased complexity that these techniques require. In this paper, quantum nondemolition theory is used to investigate the performance of a real world device, an electro-optic feed-forward intensity noise eater. It is shown that by replacing the typical beamsplitter in such a device with a single pass second harmonic generation followed by a dichroic mirror the performance of the noise eater can be significantly improved, even with low conversion efficiencies.
- Feb 10 2017 quant-ph arXiv:1702.02855v1We present the generation of continuous-wave optical squeezing from a titanium-indiffused lithium niobate waveguide resonator. We directly measure 2.9\pm 0.1 dB of single-mode squeezing, which equates to a produced level of 4.9\pm 0.1 dB after accounting for detection losses. This device showcases the current capabilities of this waveguide architecture and precipitates more complicated integrated continuous-wave quantum devices in the continuous-variable regime.
- Feb 02 2017 quant-ph arXiv:1702.00200v1The nonorthogonality of coherent states is a fundamental property which prevents them from being perfectly and deterministically discriminated. To circumvent this problem, we present an experimentally feasible protocol for the probabilistic orthogonalisation of a pair of coherent states, independent of their amplitude and phase. In contrast to unambiguous state discrimination, successful operation of our protocol is heralded without measuring the states, such that they remain suitable for further manipulation. As such, the resulting orthogonalised state may be used for further processing. Indeed, these states are close approximations of the discrete-variable superposition state $\frac{1}{\sqrt{2}}\left(|0\rangle \pm |1\rangle\right)$. This feature, coupled with the non-destructive nature of the operation, is especially useful when considering superpositions of coherent states: such states are mapped to the (weakly squeezed) vacuum or single photon Fock state, depending on the phase of the superposition. Thus this operation may find utility in hybrid continuous-discrete quantum information processing protocols.
- Jan 17 2017 quant-ph arXiv:1701.04229v2Reliable generation of single photons is of key importance for fundamental physical experiments and to demonstrate quantum technologies. Waveguide-based photon pair sources have shown great promise in this regard due to their large degree of spectral tunability, high generation rates and long photon coherence times. However, for such a source to have real world applications it needs to be efficiently integrated with fiber-optic networks. We answer this challenge by presenting an alignment-free source of photon pairs in the telecommunications band that maintains heralding efficiency > 50 % even after fiber pigtailing, photon separation, and pump suppression. The source combines this outstanding performance in heralding efficiency and brightness with a compact, stable, and easy-to-use 'plug & play' package: one simply connects a laser to the input and detectors to the output and the source is ready to use. This high performance can be achieved even outside the lab without the need for alignment which makes the source extremely useful for any experiment or demonstration needing heralded single photons.
- Dec 06 2016 quant-ph arXiv:1612.01199v2Boson Sampling has emerged as a tool to explore the advantages of quantum over classical computers as it does not require a universal control over the quantum system, which favours current photonic experimental platforms.Here, we introduce Gaussian Boson Sampling, a classically hard-to-solve problem that uses squeezed states as a non-classical resource. We relate the probability to measure specific photon patterns from a general Gaussian state in the Fock basis to a matrix function called the hafnian, which answers the last remaining question of sampling from Gaussian states. Based on this result, we design Gaussian Boson Sampling, a #P hard problem, using squeezed states. This approach leads to a more efficient photonic boson sampler with significant advantages in generation probability and measurement time over currently existing protocols.
- Nov 16 2016 quant-ph arXiv:1611.04779v2We introduce and experimentally implement a method for the absolute detector calibration of photon-number-resolving time-bin multiplexing layouts based on the measured click statistics of superconduncting nanowire detectors. In particular, the quantum efficiencies, the dark count rates, and the positive operator-valued measures of these measurement schemes are directly obtained with high accuracy. The method is based on the moments of the click-counting statistics for coherent states with different coherent amplitudes. The strength of our analysis is that we can directly conclude -- on a quantitative basis -- that the detection strategy under study is well described by a linear response function for the light-matter interaction and that it is sensitive to the polarization of the incident light field. Moreover, our method is further extended to a two-mode detection scenario. Finally, we present possible applications for such well characterized detectors, such as sensing of atmospheric loss channels and phase sensitive measurements.
- Nov 15 2016 quant-ph arXiv:1611.04360v2The progress in building large quantum states and networks requires sophisticated detection techniques to verify the desired operation. To achieve this aim, a cost- and resource-efficient detection method is the time multiplexing of photonic states. This design is assumed to be efficiently scalable; however, it is restricted by inevitable losses and limited detection efficiencies. Here, we investigate the scalability of time-multiplexed detectors under the effects of fiber dispersion and losses. We use the distinguishability of Fock states up to $n=20$ after passing the time-multiplexed detector as our figure of merit and find that, for realistic setup efficiencies of $\eta=0.85$, the optimal size for time-multiplexed detectors is 256 bins.
- Oct 27 2016 quant-ph physics.optics arXiv:1610.08326v1Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, since elements based on parametric down-conversion sources, quantum dots, color centres or atoms are fundamentally different in their frequencies and bandwidths. While pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here, we demonstrate an engineered sum-frequency-conversion process in Lithium Niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 75.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.
- Sep 12 2016 quant-ph arXiv:1609.02797v2The physical nature of any quantum source guarantees the existence of an effective Hilbert space of finite dimension, the physical sector, in which its state is completely characterized with arbitrarily high accuracy. The extraction of this sector is essential for state tomography. We show that the physical sector of a state, defined in some pre-chosen basis, can be systematically retrieved with a procedure using only data collected from a set of commuting quantum measurement outcomes, with no other assumptions about the source. We demonstrate the versatility and efficiency of the physical-sector extraction by applying it to simulated and experimental data for quantum light sources, as well as quantum systems of finite dimensions.
- Jul 12 2016 quant-ph arXiv:1607.03001v2To fully realize the potential of the time-frequency degree of freedom for photonic quantum science, techniques which selectively address the individual information-carrying modes must be established. In this work, we employ dispersion-engineered sum-frequency generation to perform temporal-mode selective measurements and manipulations on photons generated through parametric downconversion. We tailor the time-frequency mode structure of the generated photons through pump pulse shaping and confirm their structure through seven-dimensional quantum state tomography. Through changes in the second-order correlation function, we confirm that our technique manipulates and purifies the temporal structure of the overall photon state, explicitly demonstrating the effectiveness of engineered nonlinear processes for the mode manipulation of quantum states.
- Jun 30 2016 quant-ph arXiv:1606.08996v1We introduce the driven discrete time quantum walk, where walkers are added during the walk instead of only at the beginning. This leads to interference in walker number and very different dynamics when compared to the original quantum walk. These dynamics have two regimes, which we illustrate using the one-dimensional line. Then, we explore a search application which has certain advantages over current search protocols, namely that it does not require a complicated initial state nor a specific measurement time to observe the marked state. Finally, we describe a potential experimental implementation using existing technology.
- Jun 02 2016 quant-ph arXiv:1606.00299v2Quantum walks constitute a versatile platform for simulating transport phenomena on discrete graphs including topological material properties while providing a high control over the relevant parameters at the same time. To experimentally access and directly measure the topological invariants of quantum walks we implement the scattering scheme proposed by Tarasinski et al.[Phys. Rev. A 89, 042327 (2014)] in a photonic time multiplexed quantum walk experiment. The tunable coin operation provides opportunity to reach distinct topological phases, and accordingly to observe the corresponding topological phase transitions. The ability to read-out the position and the coin state distribution, complemented by explicit interferometric sign measurements, allowed the reconstruction of the scattered reflection amplitudes and thus the computation of the associated bulk topological invariants. As predicted we also find localised states at the edges between two bulks belonging to different topological phases. In order to analyse the impact of disorder we have measured invariants of two different types of disordered samples in large ensemble measurements, demonstrating their constancy in one disorder regime and a continuous transition with increasing disorder strength for the second disorder sample.
- May 30 2016 quant-ph arXiv:1605.08570v1Sampling the distribution of bosons that have undergone a random unitary evolution is strongly believed to be a computationally hard problem. Key to outperforming classical simulations of this task is to increase both the number of input photons and the size of the network. We propose driven boson sampling, in which photons are input within the network itself, as a means to approach this goal. When using heralded single-photon sources based on parametric down-conversion, this approach offers an $\sim e$-fold enhancement in the input state generation rate over scattershot boson sampling, reaching the scaling limit for such sources. More significantly, this approach offers a dramatic increase in the signal-to-noise ratio with respect to higher-order photon generation from such probabilistic sources, which removes the need for photon number resolution during the heralding process as the size of the system increases.
- Apr 13 2016 quant-ph arXiv:1604.03430v2Integrated optics provides the platform for the experimental implementation of highly complex and compact circuits for quantum information applications. In this context integrated waveguide sources represent a powerful resource for the generation of quantum states of light due to their high brightness and stability. However, the confinement of the light in a single spatial mode limits the realization of multi-channel sources. Due to this challenge one of the most adopted sources in quantum information processes, i.e. a source which generates spectrally indistinguishable polarization entangled photons in two different spatial modes, has not yet been realized in a fully integrated platform. Here we overcome this limitation by suitably engineering two periodically poled waveguides and an integrated polarization splitter in lithium niobate. This source produces polarization entangled states with fidelity of F = 0.973(3) and a test of Bell's inequality results in a violation larger than 14 standard deviations. It can work both in pulsed and continuous wave regime. This device represents a new step toward the implementation of fully integrated circuits for quantum information applications.
- Mar 23 2016 quant-ph arXiv:1603.06938v1We report the experimental point-by-point sampling of the Wigner function for nonclassical states created in an ultrafast pulsed type-II parametric down-conversion source. We use a loss-tolerant time-multiplexed detector based on a fiber-optical setup and a pair of photon-number-resolving avalanche photodiodes. By capitalizing on an expedient data-pattern tomography, we assess the properties of the light states with outstanding accuracy. The method allows us to reliably infer the squeezing of genuine two-mode states without any phase reference.
- Feb 01 2016 quant-ph arXiv:1601.08204v2Quantum walks are a well-established model for the study of coherent transport phenomena and provide a universal platform in quantum information theory. Dynamically influencing the walker's evolution gives a high degree of flexibility for studying various applications. Here, we present time-multiplexed finite quantum walks of variable size, the preparation of non-localized input states and their dynamical evolution. As a further application, we implement a state transfer scheme for an arbitrary input state to two different output modes. The presented experiments rely on the full dynamical control of a time-multiplexed quantum walk, which includes adjustable coin operation as well as the possibility to flexibly configure the underlying graph structures.
- Nov 05 2015 quant-ph arXiv:1511.01269v1Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media.
- Oct 21 2015 quant-ph physics.optics arXiv:1510.05801v3We generate pulsed, two mode squeezed states in a single spatio-temporal mode with mean photon numbers up to 20. We directly measure photon-number-correlations between the two modes with transition edge sensors up to 80 photons per mode. This corresponds roughly to a state-dimensionality of 6400. We achieve detection efficiencies of 64% in the technologically crucial telecom regime and demonstrate the high quality of our measurements by heralded nonclassical distributions up to 50 photons per pulse and calculated correlation functions up to 40th order.
- A versatile design for resonant guided-wave parametric down-conversion sources for quantum repeatersAug 03 2015 quant-ph arXiv:1507.08840v2Quantum repeaters - fundamental building blocks for long-distance quantum communication - are based on the interaction between photons and quantum memories. The photons must fulfil stringent requirements on central frequency, spectral bandwidth and purity in order for this interaction to be efficient. We present a design scheme for monolithically integrated resonant photon-pair sources based on parametric down-conversion in nonlinear waveguides, which facilitate the generation of such photons. We investigate the impact of different design parameters on the performance of our source. The generated photon spectral bandwidths can be varied between several tens of MHz up to around $1\,$GHz, facilitating an efficient coupling to different memories. The central frequency of the generated photons can be coarsely tuned by adjusting the pump frequency, poling period and sample temperature and we identify stability requirements on the pump laser and sample temperature that can be readily fulfilled with off-the-shelve components. We find that our source is capable of generating high-purity photons over a wide range of photon bandwidths. Finally, the PDC emission can be frequency fine-tuned over several GHz by simultaneously adjusting the sample temperature and pump frequency. We conclude our study with demonstrating the adaptability of our source to different quantum memories.
- Aug 03 2015 quant-ph physics.optics arXiv:1507.08802v3We propose and characterize a quantum interface between telecommunication wavelengths (1311 nm) and an Yb-dipole transition (369.5 nm) based on a second order sum frequency process in a PPKTP waveguide. An external (internal) conversion efficiency above 5% (10%) is shown using classical bright light.
- We analyze the generation rates and preparation fidelities of photon triplet states in pulsed cascaded parametric down-conversion (PDC) under realistic experimental circumstances. As a model system, we assume a monolithically integrated device with negligible interface loss between the two consecutive PDC stages. We model the secondary down-conversion process in terms of a lossy channel and provide a detailed analysis of noise contributions. Taking variable pump powers into account, we estimate the impact of higher-order photon contributions and conversion processes on the achievable coincidence probabilities. At mean photon numbers of $\langle m\rangle\sim0.25$ photons per pulse behind the first PDC stage, we expect around $4.0$ genuine photon triplets per hour. Additionally, we discuss fundamental limitations of our model system as well as feasible improvements to the detectable photon triplet rate.
- May 07 2015 quant-ph arXiv:1505.01416v2Quantum optics in combination with integrated optical devices shows great promise for efficient manipulation of single photons. New physical concepts, however, can only be found when these fields truly merge and reciprocally enhance each other. Here we work at the merging point and investigate the physical concept behind a two-coupled-waveguide system with an integrated parametric down-conversion process. We use the eigenmode description of the linear system and the resulting modification in momentum conservation to derive the state generation protocol for this type of device. With this new concept of state engineering, we are able to effectively implement a two-in-one waveguide source that produces the useful two-photon NOON state without extra overhead such as phase stabilization or narrow-band filtering. Experimentally, we benchmark our device by measuring a two-photon NOON state fidelity of $\mathcal{F} = (84.2 \pm 2.6) \%$ and observe the characteristic interferometric pattern directly given by the doubled phase dependence with a visibility of $V_{\mathrm{NOON}} = (93.3 \pm 3.7) \%$.
- Apr 24 2015 quant-ph arXiv:1504.06251v4Field-orthogonal temporal modes of photonic quantum states provide a new framework for quantum information science (QIS). They intrinsically span a high-dimensional Hilbert space and lend themselves to integration into existing single-mode fiber communication networks. We show that the three main requirements to construct a valid framework for QIS -- the controlled generation of resource states, the targeted and highly efficient manipulation of temporal modes and their efficient detection -- can be fulfilled with current technology. We suggest implementations of diverse QIS applications based on this complete set of building blocks.
- Apr 09 2015 quant-ph physics.optics arXiv:1504.01854v1The practical prospect of quantum communication and information processing relies on sophisticated single photon pairs which feature controllable waveform, narrow spectrum, excellent purity, fiber compatibility and miniaturized design. For practical realizations, stable, miniaturized, low-cost devices are required. Sources with one or some of above performances have been demonstrated already, but it is quite challenging to have a source with all of the described characteristics simultaneously. Here we report on an integrated single-longitudinal-mode non-degenerate narrowband photon pair source, which exhibits all requirements needed for quantum applications. The device is composed of a periodically poled Ti-indiffused lithium niobate waveguide with high reflective dielectric mirror coatings deposited on the waveguide end-faces. Photon pairs with wavelengths around 890 nm and 1320 nm are generated via type II phase-matched parametric down-conversion. Clustering in this dispersive cavity restricts the whole conversion spectrum to one single-longitudinal-mode in a single cluster yielding a narrow bandwidth of only 60 MHz. The high conversion efficiency in the waveguide, together with the spectral clustering in the doubly resonant waveguide, leads to a high brightness of $3\times10^4~$pairs/(s$\cdot$mW$\cdot$MHz). This source exhibits prominent single-longitudinal-mode purity and remarkable temporal shaping capability. Especially, due to temporal broadening, we can observe that the coherence time of the two-photon component of PDC state is actually longer than the one of the single photon states. The miniaturized monolithic design makes this source have various fiber communication applications.
- Mar 30 2015 quant-ph arXiv:1503.08028v2We report on the implementation of a time-multiplexed click detection scheme to probe quantum correlations between different spatial optical modes. We demonstrate that such measurement setups can uncover nonclassical correlations in multimode light fields even if the single mode reductions are purely classical. The nonclassical character of correlated photon pairs, generated by a parametric down-conversion, is immediately measurable employing the theory of click counting instead of low-intensity approximations with photoelectric detection models. The analysis is based on second- and higher-order moments, which are directly retrieved from the measured click statistics, for relatively high mean photon numbers. No data postprocessing is required to demonstrate the effects of interest with high significance, despite low efficiencies and experimental imperfections. Our approach shows that such novel detection schemes are a reliable and robust way to characterize quantum-correlated light fields for practical applications in quantum communications.
- Dec 22 2014 quant-ph arXiv:1412.6488v2Two photons can simultaneously share entanglement between several degrees of freedom such as polarization, energy-time, spatial mode and orbital angular momentum. This resource is known as hyperentanglement, and it has been shown to be an important tool for optical quantum information processing. Here we demonstrate the quantum storage and retrieval of photonic hyperentanglement in a solid-state quantum memory. A pair of photons entangled in polarization and energy-time is generated such that one photon is stored in the quantum memory, while the other photon has a telecommunication wavelength suitable for transmission in optical fibre. We measured violations of a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality for each degree of freedom, independently of the other one, which proves the successful storage and retrieval of the two bits of entanglement shared by the photons. Our scheme is compatible with long-distance quantum communication in optical fibre, and is in particular suitable for linear-optical entanglement purification for quantum repeaters.
- Dec 02 2014 quant-ph arXiv:1412.0448v1In the quest for applicable quantum information technology miniaturised, compact and scalable sources are of paramount importance. Here, we present the concept for the generation of 2-photon N00N states without further post-processing in a single non-linear optical element. Based upon a periodically poled waveguide coupler, we present the principle of state generation via type-0 parametric down-conversion inside this type of devices. With the eigenmode description of the linear optical element, we utilise the delocalised photon pair generation to generate a N00N state in the measurement basis. We show, that we are able to eliminate the need for narrow-band spectral filtering, as well as for phase-stabilisation of the pump light, making this approach an elegant way to produce 2-photon N00N states.
- Sep 30 2014 quant-ph arXiv:1409.8076v2We present an efficient and robust method for the reconstruction of photon number distributions by using solely thermal noise as a probe. The method uses a minimal number of pre-calibrated quantum devices, only one on/off single-photon detector is sufficient. Feasibility of the method is demonstrated by the experimental inference of single-photon, thermal and two-photon states. The method is stable to experimental imperfections and provides a direct, user-friendly quantum diagnostics tool.
- Aug 29 2014 quant-ph arXiv:1408.6647v1In this letter we introduce the concept of a driven quantum walk. This work is motivated by recent theoretical and experimental progress that combines quantum walks and parametric down- conversion, leading to fundamentally different phenomena. We compare these striking differences by relating the driven quantum walks to the original quantum walk. Next, we illustrate typical dynamics of such systems and show these walks can be controlled by various pump configurations and phase matchings. Finally, we end by proposing an application of this process based on a quantum search algorithm that performs faster than a classical search.
- The measurement of light characteristics at the single- and few photon level plays a key role in many quantum optics applications. Often photodetection is preceded with the transmission of quantum light over long distances in optical fibers with their low loss window near 1550nm. Nonetheless, the detection of the photonic states at telecommunication wavelengths via avalanche photodetectors has long been facing severe restrictions. Only recently, demonstrations of the first free-running detector techniques in the telecommunication band have lifted the demand of synchronizing the signal with the detector. Moreover, moderate cooling is required to gain single-photon sensitivity with these detectors. Here we implement a liquid-nitrogen cooled negative-feedback avalanche diode (NFAD) at telecommunication wavelengths and investigate the properties of this highly flexible, free-running single-photon sensitive detector. Our realization of cooling provides a large range of stable operating temperatures and has advantages over the relatively bulky commercial refrigerators that have been used before. We determine the region of NFAD working parameters most suitable for single-photon sensitive detection enabling a direct plug-in of our detector to a true photon counting task.
- Jul 04 2014 quant-ph arXiv:1407.0959v1We give a detailed account of an efficient search algorithm for the data pattern tomography proposed by J. Rehacek, D. Mogilevtsev, and Z. Hradil [Phys. Rev. Lett.~\textbf105, 010402 (2010)], where the quantum state of a system is reconstructed without a priori knowledge about the measuring setup. The method is especially suited for experiments involving complex detectors, which are difficult to calibrate and characterize. We illustrate the approach with the case study of the homodyne detection of a nonclassical photon state.
- Jun 18 2014 quant-ph arXiv:1406.4252v1Parametric down-conversion (PDC) is the established standard for the practical generation of a multiplicity of quantum optical states. These include two-mode squeezed vacuum, heralded non-Gaussian states and entangled photon pairs. Detailed theoretical studies provide insight into the time-frequency (TF) structure of PDC, which are governed by the complex-valued joint spectral amplitude (JSA) function. However in experiments, the TF structure of PDC is mostly characterised by intensity measurementsthat forbid access to the important phase of the JSA. In this paper, we present an amplitude-sensitive quantum process tomography technique that combines methods from ultrafast optics and classical three-wave mixing. Our approach facilitates a direct and phase-sensitive time-frequency tomography of PDC with high spectral resolution and excellent signal-to-noise ratio. This is important for all quantum optical applications, which rely on engineered parametric processes and base on minute knowledge of the quantum wave-function for the generation of tailored photonic quantum states.
- Jun 16 2014 quant-ph arXiv:1406.3590v1We report the experimental reconstruction of the statistical properties of an ultrafast pulsed type-II parametric down conversion source in a periodically poled KTP waveguide at telecom wavelengths, with almost perfect photon-number correlations. We used a photon-number-resolving time-multiplexed detector based on a fiber-optical setup and a pair of avalanche photodiodes. By resorting to a germane data-pattern tomography, we assess the properties of the nonclassical light states states with unprecedented precision.
- May 27 2014 quant-ph arXiv:1405.6486v1We present a source of polarization-entangled photon pairs suitable for the implementation of long-distance quantum communication protocols using quantum memories. Photon pairs with wavelengths 883 nm and 1338 nm are produced by coherently pumping two periodically poled nonlinear waveguides embedded in the arms of a polarization interferometer. Subsequent spectral filtering reduces the bandwidth of the photons to 240 MHz. The bandwidth is well-matched to a quantum memory based on an Nd:YSO crystal, to which, in addition, the center frequency of the 883 nm photons is actively stabilized. A theoretical model that includes the effect of the filtering is presented and accurately fits the measured correlation functions of the generated photons. The model can also be used as a way to properly assess the properties of the source. The quality of the entanglement is revealed by a visibility of V = 96.1(9)% in a Bell-type experiment and through the violation of a Bell inequality.
- May 01 2014 quant-ph arXiv:1404.7725v3The spectral-temporal correlation and the correlation time of a biphoton wavepacket generated in the process of parametric down-conversion (PDC), is of great importance for a broad range of quantum experiments. We utilise an integrated PDC source to generate biphotons with different types of spectral-temporal correlations and probe their respective correlation times. The outcomes confirms that the correlation time is independent of the coherence time of the pump light, and it is only determined by the waveguide length and its dispersion properties. Furthermore, we investigate the properties of the PDC biphoton wavepacket exhibiting different types of spectral-temporal correlations and their suitability for quantum-enhanced applications.
- Mar 19 2014 quant-ph arXiv:1403.4397v3Time-frequency Schmidt (TFS) modes of ultrafast quantum states are naturally compatible with high bit-rate integrated quantum communication networks. Thus they offer an attractive alternative for the realization of high dimensional quantum optics. Here, we present a quantum pulse gate based on dispersion-engineered ultrafast frequency conversion in a nonlinear optical waveguide, which is a key element for harnessing the potential of TFS modes. We experimentally retrieve the modal spectral-temporal structure of our device and demonstrate a single-mode operation fidelity of 80\%, which is limited by experimental shortcomings. In addition, we retrieve a conversion efficiency of 87.7\% with a high signal-to-noise ratio of 8.8 when operating the quantum pulse gate at the single-photon level.
- Mar 13 2014 quant-ph arXiv:1403.2886v2Parametric down-conversion (PDC) forms one of the basic building blocks for quantum optical experiments. However, the intrinsic multimode spectral-temporal structure of pulsed PDC often poses a severe hindrance for the direct implementation of the heralding of pure single-photon states or, for example, continuous-variable entanglement distillation experiments. To get rid of multimode effects narrowband frequency filtering is frequently applied to achieve a single-mode behavior. A rigorous theoretical description to accurately describe the effects of filtering on PDC, however, is still missing. To date, the theoretical models of filtered PDC are rooted in the discrete-variable domain and only account for filtering in the low gain regime, where only a few photon pairs are emitted at any single point in time. In this paper we extend these theoretical descriptions and put forward a simple model, which is able to accurately describe the effects of filtering on PDC in the continuous-variable domain. This developed straightforward theoretical framework enables us to accurately quantify the trade-off between suppression of higher-order modes, reduced purity and lowered Einstein-Podolsky-Rosen (EPR) entanglement, when narrowband filters are applied to multimode type-II PDC.
- Jan 29 2014 quant-ph arXiv:1401.7111v1We report on a bright, nondegenerate type-I parametric down-conversion source, which is well suited for passive decoy-state quantum key distribution. We show the photon-number-resolved analysis over a broad range of pump powers and we prove heralded higher-order $n$-photon states up to $n=4$. The inferred photon click statistics exhibit excellent agreements to the theoretical predictions. From our measurement results we conclude that our source meets the requirements to avert photon-number-splitting attacks.
- Jan 28 2014 quant-ph arXiv:1401.6958v1In quantum teleportation, the state of a single quantum system is disembodied into classical information and purely quantum correlations, to be later reconstructed onto a second system that has never directly interacted with the first one. This counterintuitive phenomenon is a cornerstone of quantum information science due to its essential role in several important tasks such as the long-distance transmission of quantum information using quantum repeaters. In this context, a challenge of paramount importance is the distribution of entanglement between remote nodes, and to use this entanglement as a resource for long-distance light-to-matter quantum teleportation. Here we demonstrate quantum teleportation of the polarization state of a telecom-wavelength photon onto the state of a solid-state quantum memory. Entanglement is established between a rare-earth-ion doped crystal storing a single photon that is polarization-entangled with a flying telecom-wavelength photon. The latter is jointly measured with another flying qubit carrying the polarization state to be teleported, which heralds the teleportation. The fidelity of the polarization state of the photon retrieved from the memory is shown to be greater than the maximum fidelity achievable without entanglement, even when the combined distances travelled by the two flying qubits is 25 km of standard optical fibre. This light-to-matter teleportation channel paves the way towards long-distance implementations of quantum networks with solid-state quantum memories.
- Dec 02 2013 quant-ph arXiv:1311.7675v3Phases of matter with non-trivial topological order are predicted to exhibit a variety of exotic phenomena, such as the existence robust localized bound states in 1D systems, and edge states in 2D systems, which are expected to display spin-helicity, immunity to back-scattering, and weak anti-localization. In this Letter, we present an experimental observation of topological structures generated via the controlled implementation of two consecutive non-commuting rotations in photonic discrete-time quantum walks. The second rotation introduces valley-like Dirac points in the system, allowing to create the non-trivial topological pattern. By choosing specific values for the rotations, it is possible to coherently drive the system between topological sectors characterized by different topological invariants. We probe the full topological landscape, demonstrating the emergence of localized bound states hosted at the topological boundaries, and the existence of extremely localized or delocalized non-Gaussian quantum states. Our results pave the way for the study of valley-based electronics and applications of topological mechanisms in robust optical-device engineering.
- Jul 31 2013 quant-ph physics.optics arXiv:1307.7939v1We present an integrated source of polarization entangled photon pairs in the telecom regime, which is based on type II-phasematched parametric down-conversion (PDC) in a Ti-indiffused waveguide in periodically poled lithium niobate. The domain grating -- consisting of an interlaced bi-periodic structure -- is engineered to provide simultaneous phase-matching of two PDC processes, and enables the direct generation of non-degenerate, polarization entangled photon pairs with a brightness of $B=7\times10^3$ pairs/(s mW GHz). The spatial separation of the photon pairs is accomplished by a fiber-optical multiplexer facilitating a high compactness of the overall source. Visibilities exceeding 95% and a violation of the Bell inequality with $S=2.57\pm0.06$ could be demonstrated.
- Jun 10 2013 quant-ph physics.optics arXiv:1306.1756v1We report on an integrated non-degenerate narrowband photon pair source produced at 890 nm and 1320nm via type II parametric down-conversion in a periodically poled waveguide with high-reflective dielectric mirrors deposited on the waveguide end faces. The conversion spectrum consists of three clusters and only 3 to 4 longitudinal modes with about 150 MHz bandwidth in each cluster. The high conversion efficiency in the waveguide, together with the spectral clustering in the double resonator, leads to a high brightness of $3\times10^3~$pairs/(s$\cdot$mW$\cdot$MHz). The compact and rugged monolithic design makes the source a versatile device for various applications in quantum communication.
- May 30 2013 quant-ph arXiv:1305.6806v2High dimensional quantum states are of fundamental interest for quantum information processing. They give access to large Hilbert spaces and, in turn, enable the encoding of quantum information on multiple modes. One method to create such quantum states is parametric down-conversion (PDC) in waveguide arrays (WGAs) which allows for the creation of highly entangled photon-pairs in controlled, easily accessible spatial modes, with unique spectral properties. In this paper we examine both theoretically and experimentally the PDC process in a lithium niobate WGA. We measure the spatial and spectral properties of the emitted photon-pairs, revealing strong correlations between spectral and spatial degrees of freedom of the created photons. Our measurements show that, in contrast to prior theoretical approaches, spectrally dependent coupling effects have to be taken into account in the theory of PDC in WGAs. To interpret the results, we developed a theoretical model specifically taking into account spectrally dependent coupling effects, which further enables us to explore the capabilities and limitations for engineering the spatial correlations of the generated quantum states.
- Apr 25 2013 quant-ph arXiv:1304.6635v2We implement an ultrafast pulsed type-II parametric down conversion source in a periodically poled KTP waveguide at telecommunication wavelengths with almost identical properties between signal and idler. As such, our source resembles closely a pure, genuine single mode photon pair source with indistinguishable modes. We measure the joint spectral intensity distribution and second order correlation functions of the marginal beams and find with both methods very low effective mode numbers corresponding to a Schmidt number below 1.16. We further demonstrate the indistinguishability as well as the purity of signal and idler photons by Hong-Ou-Mandel interferences between signal and idler and between signal/idler and a coherent field, respectively. Without using narrowband spectral filtering, we achieve a visibility for the interference between signal and idler of 94.8% and determine a purity of more than 80% for the heralded single photon states. Moreover, we measure raw heralding efficiencies of 20.5% and 15.5% for the signal and idler beams corresponding to detector-loss corrected values of 80% and 70%.
- Feb 28 2013 quant-ph arXiv:1302.6893v1Pulsed parametric downconversion (PDC) processes generate photon pairs with a rich spectral-temporal structure, which offer an attractive potential for quantum information and communication applications. In this paper, we investigate the four-dimensional chronocyclic Wigner function of the PDC state, which naturally lends itself to the pulsed characteristics of these states. From this function we derive the conditioned time-bandwidth product of one of the pair photons, a quantity which is not only a valid measure of entanglement between the PDC photons but also allows to highlight a remarkable link between the discrete and continuous variable descriptions of PDC. We numerically analyze PDC processes with different conditions to demonstrate the versatility of our approach, which is applicable to a large number of current PDC sources.
- Nov 19 2012 quant-ph physics.optics arXiv:1211.3960v2We present a pulsed and integrated, highly non-degenerate parametric downconversion (PDC) source of heralded single photons at telecom wavelengths, paired with heralding photons around 800 nm. The active PDC section is combined with a passive, integrated wavelength division demultiplexer on-chip, which allows for the spatial separation of signal and idler photons with efficiencies of more than 96.5 %, as well as with multi-band reflection and anti-reflection coatings which facilitate low incoupling losses and a pump suppression at the output of the device of more than 99 %. Our device is capable of preparing single photons with efficiencies of 60 % with a coincidences-to-accidentals ratio exceeding 7400. Likewise it shows practically no significant background noise compared to continuous wave realizations. For low pump powers, we measure a conditioned second-order correlation function of g^(2)(0)=0.0038, which proves almost pure single photon generation. In addition, our source can feature a high brightness of <n_pulse>=0.24 generated photon pairs per pump pulse at pump power levels below 100 uW. The high quality of the pulsed PDC process in conjunction with the integration of highly efficient passive elements makes our device a promising candidate for future quantum networking applications, where an efficient miniaturization plays a crucial role.
- Nov 01 2012 quant-ph arXiv:1210.8342v2Frequency conversion (FC) and type-II parametric down-conversion (PDC) processes serve as basic building blocks for the implementation of quantum optical experiments: type-II PDC enables the efficient creation of quantum states such as photon-number states and Einstein-Podolsky-Rosen-states (EPR-states). FC gives rise to technologies enabling efficient atom-photon coupling, ultrafast pulse gates and enhanced detection schemes. However, despite their widespread deployment, their theoretical treatment remains challenging. Especially the multi-photon components in the high-gain regime as well as the explicit time-dependence of the involved Hamiltonians hamper an efficient theoretical description of these nonlinear optical processes. In this paper, we investigate these effects and put forward two models that enable a full description of FC and type-II PDC in the high-gain regime. We present a rigorous numerical model relying on the solution of coupled integro-differential equations that covers the complete dynamics of the process. As an alternative, we develop a simplified model that, at the expense of neglecting time-ordering effects, enables an analytical solution. While the simplified model approximates the correct solution with high fidelity in a broad parameter range, sufficient for many experimental situations, such as FC with low efficiency, entangled photon-pair generation and the heralding of single photons from type-II PDC, our investigations reveal that the rigorous model predicts a decreased performance for FC processes in quantum pulse gate applications and an enhanced EPR-state generation rate during type-II PDC, when EPR squeezing values above 12 dB are considered.
- May 10 2012 quant-ph arXiv:1205.1850v1We show that with the addition of multiple walkers, quantum walks on a line can be transformed into lattice graphs of higher dimension. Thus, multi-walker walks can simulate single-walker walks on higher dimensional graphs and vice versa. This exponential complexity opens up new applications for present-day quantum walk experiments. We discuss the applications of such higher-dimensional structures and how they relate to linear optics quantum computing. In particular we show that multi-walker quantum walks are equivalent to the BosonSampling model for linear optics quantum computation proposed by Aaronson & Arkhipov. With the addition of control over phase-defects in the lattice, which can be simulated with entangling gates, asymmetric lattice structures can be constructed which are universal for quantum computation.
- Apr 17 2012 quant-ph arXiv:1204.3555v1Multi-dimensional quantum walks can exhibit highly non-trivial topological structure, providing a powerful tool for simulating quantum information and transport systems. We present a flexible implementation of a 2D optical quantum walk on a lattice, demonstrating a scalable quantum walk on a non-trivial graph structure. We realized a coherent quantum walk over 12 steps and 169 positions using an optical fiber network. With our broad spectrum of quantum coins we were able to simulate the creation of entanglement in bipartite systems with conditioned interactions. Introducing dynamic control allowed for the investigation of effects such as strong non-linearities or two-particle scattering. Our results illustrate the potential of quantum walks as a route for simulating and understanding complex quantum systems.