results for au:Shao_L in:gr-qc

- Feb 15 2018 gr-qc arXiv:1802.05241v1We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0e-8, +1e-9] Hz/s. Potential signals could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h_0 is 4e-25 near 170 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 1.3e-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ~1.5e-25.
- Dec 05 2017 gr-qc astro-ph.CO arXiv:1712.01168v1Cosmic strings are topological defects which can be formed in GUT-scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension $G\mu$ and the intercommutation probability, using not only the burst analysis performed on the O1 data set, but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and Big-Bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.
- Nov 16 2017 astro-ph.HE gr-qc arXiv:1711.05578v1On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through gravitational waves with electromagnetic observations. The source's luminosity distance is $340^{+140}_{-140}$ Mpc, corresponding to redshift $0.07^{+0.03}_{-0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity.
- Oct 26 2017 astro-ph.HE gr-qc arXiv:1710.09320v1The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the equation of state of nuclear matter. This could be either a black hole or a neutron star (NS), with the latter being either long-lived or too massive for stability implying delayed collapse to a black hole. Here, we present a search for gravitational waves from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short ($\lesssim1$ s) and intermediate-duration ($\lesssim 500$ s) signals, which includes gravitational-wave emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root-sum-square of the gravitational-wave strain emitted from 1--4 kHz is $h_{\rm rss}^{50\%}=2.1\times 10^{-22}$ Hz$^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is $h_{\rm rss}^{50\%}=8.4\times 10^{-22}$ Hz$^{-1/2}$ for a millisecond magnetar model, and $h_{\rm rss}^{50\%}=5.9\times 10^{-22}$ Hz$^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.
- Oct 17 2017 gr-qc arXiv:1710.05837v1The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.8_{-1.3}^{+2.7} \times 10^{-9}$ with $90\%$ confidence, compared with $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.1_{-0.7}^{+1.2} \times 10^{-9}$ from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
- Oct 09 2017 gr-qc astro-ph.HE arXiv:1710.02327v2Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, \it narrow-band analyses methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of eleven pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched: in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.
- Sep 28 2017 gr-qc arXiv:1709.09203v1We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously-published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity.
- Sep 28 2017 gr-qc astro-ph.HE arXiv:1709.09660v3On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm-rate of $\lesssim$ 1 in 27000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are $30.5_{-3.0}^{+5.7}$ Msun and $25.3_{-4.2}^{+2.8}$ Msun (at the 90% credible level). The luminosity distance of the source is $540_{-210}^{+130}~\mathrm{Mpc}$, corresponding to a redshift of $z=0.11_{-0.04}^{+0.03}$. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg$^2$ using only the two LIGO detectors to 60 deg$^2$ using all three detectors. For the first time, we can test the nature of gravitational wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.
- Aug 29 2017 gr-qc arXiv:1708.08285v2Gravitational waves can be used to test general relativity (GR) in the highly dynamical strong-field regime. Scalar-tensor theories of gravity are natural alternatives to GR that can manifest nonperturbative phenomena in neutron stars (NSs). One such phenomenon, known as dynamical scalarization, occurs in coalescing binary NS systems. Ground-based gravitational-wave detectors may be sensitive to this effect, and thus could potentially further constrain scalar-tensor theories. This type of analysis requires waveform models of dynamically scalarizing systems; in this work we devise an analytic model of dynamical scalarization using an effective action approach. For the first time, we compute the Newtonian-order Hamiltonian describing the dynamics of a dynamically scalarizing binary in a self-consistent manner. Despite only working to leading order, the model accurately predicts the frequency at which dynamical scalarization occurs. In conjunction with Landau theory, our model allows one to definitively establish dynamical scalarization as a second-order phase transition. We also connect dynamical scalarization to the related phenomena of spontaneous scalarization and induced scalarization; these phenomena are naturally encompassed into our effective action approach.
- Jul 21 2017 gr-qc astro-ph.HE arXiv:1707.06535v1We design a direct test of the local position invariance (LPI) in the post-Newtonian gravity, using the timing observation of the triple pulsar, PSR J0337+1715. The test takes advantage of the large gravitational acceleration exerted by the outer white dwarf to the inner neutron star -- white dwarf binary. Using machine-precision three-body simulations and dedicated Markov-chain Monte Carlo (MCMC) techniques with various sampling strategies and noise realizations, we estimate that the Whitehead's parameter could have already been limited to $|\xi| \lesssim 0.4$ (95\% CL), with the published timing data spanning from January 2012 to May 2013. The constraint is still orders of magnitude looser than the best limit, yet it is able to independently falsify Whitehead's gravity theory where $\xi=1$. In addition, the new test is immune to extra assumptions and involves full dynamics of a three-body system with a strongly self-gravitating neutron star.
- Jul 11 2017 gr-qc astro-ph.IM arXiv:1707.02667v2We report on an all-sky search for periodic gravitational waves in the frequency band 20-475 Hz and with a frequency time derivative in the range of [-1.0, +0.1]e-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are 4e-25 near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest upper limits obtained are 1.5e-25. These upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest upper limits obtained for the strain amplitude are 2.5e-25.
- Jul 11 2017 gr-qc arXiv:1707.02669v2We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1/$\sqrt{{\textrm{Hz}}}$]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of $1.8 \times 10^{-25}$. At the low end of our frequency range, 20 Hz, we achieve upper limits of $3.9 \times 10^{-24}$. At 55 Hz we can exclude sources with ellipticities greater than $10^{-5}$ within 100 pc of Earth with fiducial value of the principal moment of inertia of $10^{38} \textrm{kg m}^2$.
- Jun 13 2017 astro-ph.HE gr-qc arXiv:1706.03119v3We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modelled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range from 25 Hz to 2000 Hz, spanning the current observationally-constrained range of the binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at 175 Hz, with comparable limits set across the most sensitive frequency range from 100 Hz to 200 Hz. At this frequency, the 95 pct upper limit on signal amplitude h0 is 2.3e-25 marginalized over the unknown inclination angle of the neutron star's spin, and 8.03e-26 assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3-4 stronger than those set by other analyses of the same data, and a factor of about 7 stronger than the best upper limits set using initial LIGO data. In the vicinity of 100 Hz, the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on inclination angle, if the most likely inclination angle of 44 degrees is assumed, they are within a factor of 1.7.
- Jun 07 2017 gr-qc astro-ph.HE arXiv:1706.01812v1We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10:11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70,000 years. The inferred component black hole masses are $31.2^{+8.4}_{-6.0}\,M_\odot$ and $19.4^{+5.3}_{-5.9}\,M_\odot$ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, $\chi_\mathrm{eff} = -0.12^{+0.21}_{-0.30}.$ This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is $880^{+450}_{-390}~\mathrm{Mpc}$ corresponding to a redshift of $z = 0.18^{+0.08}_{-0.07}$. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to $m_g \le 7.7 \times 10^{-23}~\mathrm{eV}/c^2$. In all cases, we find that GW170104 is consistent with general relativity.
- Apr 26 2017 gr-qc astro-ph.HE arXiv:1704.07561v2Pulsar timing and gravitational-wave (GW) detectors are superb laboratories to study gravity theories in the strong-field regime. Here we combine those tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF), which predicts nonperturbative scalarization phenomena for neutron stars (NSs). First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs) for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical) scalarization sets in during the early (or late) stages of a binary NS (BNS) evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.
- Violations of Lorentz invariance can lead to an energy-dependent vacuum dispersion of light, which results in arrival-time differences of photons arising with different energies from a given transient source. In this work, direction-dependent dispersion constraints are obtained on nonbirefringent Lorentz-violating effects, using the observed spectral lags of the gamma-ray burst GRB 160625B. This burst has unusually large high-energy photon statistics, so we can obtain constraints from the true spectral time lags of bunches of high-energy photons rather than from the rough time lag of a single highest-energy photon. Also, GRB 160625B is the only burst to date having a well-defined transition from positive lags to negative lags, which provides a unique opportunity to distinguish Lorentz-violating effects from any source-intrinsic time lag in the emission of photons of different energy bands. Our results place comparatively robust two-sided constraints on a variety of isotropic and anisotropic coefficients for Lorentz violation, including first bounds on Lorentz-violating effects from operators of mass dimension ten in the photon sector.
- Apr 18 2017 gr-qc arXiv:1704.04628v4During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals and GW151226, produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected, therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass $100\,M_\odot$, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than $0.93~\mathrm{Gpc^{-3}\,yr}^{-1}$ in comoving units at the $90\%$ confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.
- Apr 13 2017 gr-qc arXiv:1704.03719v3Results are presented from a semi-coherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run (O1). The search combines a frequency domain matched filter (Bessel-weighted $\mathcal{F}$-statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No evidence of gravitational waves is found in the frequency range 60-650 Hz. Frequentist 95% confidence strain upper limits, $h_0^{95\%} = 4.0\times10^{-25}$, $8.3\times10^{-25}$, and $3.0\times10^{-25}$ for electromagnetically restricted source orientation, unknown polarization, and circular polarization, respectively, are reported at 106 Hz. They are $\leq 10$ times higher than the theoretical torque-balance limit at 106 Hz.
- Possible violations of Lorentz invariance (LIV) have been investigated for a long time using the observed spectral lags of gamma-ray bursts (GRBs). However, these generally have relied on using a single photon in the highest energy range. Furthermore, the search for LIV lags has been hindered by our ignorance concerning the intrinsic time lag in different energy bands. GRB 160625B, the only burst so far with a well-defined transition from $positive$ lags to $negative$ lags provides a unique opportunity to put new constraints on LIV. Using multi-photon energy bands we consider the contributions to the observed spectral lag from both the intrinsic time lag and the lag by LIV effects, and assuming the intrinsic time lag to have a positive dependence on the photon energy, we obtain robust limits on LIV by directly fitting the spectral lag data of GRB 160625B. Here we show that these robust limits on the quantum gravity energy scales are $E_{\rm QG,1}\geq0.5\times10^{16}$ GeV for the linear, and $E_{\rm QG,2}\geq1.4\times10^{7}$ GeV for the quadratic LIV effects, respectively. In addition, we give for the first time a reasonable formulation of the intrinsic energy-dependent time lag.
- Nov 14 2016 gr-qc arXiv:1611.03703v3We improve the accuracy of the effective-one-body (EOB) waveforms that were employed during the first observing run of Advanced LIGO for binaries of spinning, nonprecessing black holes by calibrating them to a set of 141 numerical-relativity (NR) waveforms. The NR simulations expand the domain of calibration towards larger mass ratios and spins, as compared to the previous EOBNR model. Merger-ringdown waveforms computed in black-hole perturbation theory for Kerr spins close to extremal provide additional inputs to the calibration. For the inspiral-plunge phase, we use a Markov-chain Monte Carlo algorithm to efficiently explore the calibration space. For the merger-ringdown phase, we fit the NR signals with phenomenological formulae. After extrapolation of the calibrated model to arbitrary mass ratios and spins, the (dominant-mode) EOBNR waveforms have faithfulness --- at design Advanced-LIGO sensitivity --- above $99\%$ against all the NR waveforms, including 16 additional waveforms used for validation, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling for these binary configurations. We find that future NR simulations at mass ratios $\gtrsim 4$ and double spin $\gtrsim 0.8$ will be crucial to resolve discrepancies between different ways of extrapolating waveform models. We also find that some of the NR simulations that already exist in such region of parameter space are too short to constrain the low-frequency portion of the models. Finally, we build a reduced-order version of the EOBNR model to speed up waveform generation by orders of magnitude, thus enabling intensive data-analysis applications during the upcoming observation runs of Advanced LIGO.
- Symmetries play important roles in modern theories of physical laws. In this paper, we review several experimental tests of important symmetries associated with the gravitational interaction, including the universality of free fall for self-gravitating bodies, time-shift symmetry in the gravitational constant, local position invariance and local Lorentz invariance of gravity, and spacetime translational symmetries. Recent experimental explorations for post-Newtonian gravity are discussed, of which, those from pulsar astronomy are highlighted. All of these tests, of very different aspects of gravity theories, at very different length scales, favor to very high precision the predictions of the strong equivalence principle (SEP) and, in particular, general relativity which embodies SEP completely. As the founding principles of gravity, these symmetries are motivated to be promoted to even stricter tests in future.
- Feb 19 2016 gr-qc astro-ph.HE arXiv:1602.05725v2Three conceptually different masses appear in equations of motion for objects under gravity, namely, the inertial mass, $m_{\cal I}$, the passive gravitational mass, $m_{\cal P}$, and the active gravitational mass, $m_{\cal A}$. It is assumed that, for any objects, $m_{\cal I} = m_{\cal P} = m_{\cal A}$ in the Newtonian gravity, and $m_{\cal I} = m_{\cal P}$ in the Einsteinian gravity, oblivious to objects' sophisticated internal structure. Empirical examination of the equivalence probes deep into gravity theories. We study the possibility of carrying out new tests based on pulsar timing of the stellar triple system, PSR J0337+1715. Various machine-precision three-body simulations are performed, from which, the equivalence-violating parameters are extracted with Markov chain Monte Carlo sampling that takes full correlations into account. We show that the difference in masses could be probed to $3\times10^{-8}$, improving the current constraints from lunar laser ranging on the post-Newtonian parameters that govern violations of $m_{\cal P}=m_{\cal I}$ and $m_{\cal A}=m_{\cal P}$ by thousands and millions, respectively. The test of $m_{\cal P}=m_{\cal A}$ would represent the first test of Newton's third law with compact objects.
- The Square Kilometre Array (SKA) will use pulsars to enable precise measurements of strong gravity effects in pulsar systems, which yield tests of gravitational theories that cannot be carried out anywhere else. The Galactic census of pulsars will discover dozens of relativistic pulsar systems, possibly including pulsar -- black hole binaries which can be used to test the "cosmic censorship conjecture" and the "no-hair theorem". Also, the SKA's remarkable sensitivity will vastly improve the timing precision of millisecond pulsars, allowing probes of potential deviations from general relativity (GR). Aspects of gravitation to be explored include tests of strong equivalence principles, gravitational dipole radiation, extra field components of gravitation, gravitomagnetism, and spacetime symmetries.
- Dec 09 2014 gr-qc arXiv:1412.2320v2In the pure-gravity sector of the minimal standard-model extension, nine Lorentz-violating coefficients of a vacuum-condensed tensor field describe dominant observable deviations from general relativity, out of which eight were already severely constrained by precision experiments with lunar laser ranging, atom interferometry, and pulsars. However, the time-time component of the tensor field, $\bar s^{\rm TT}$, dose not enter into these experiments, and was only very recently constrained by Gravity Probe B. Here we propose a novel idea of using the Lorentz boost between different frames to mix different components of the tensor field, and thereby obtain a stringent limit of $\bar s^{\rm TT}$ from binary pulsars. We perform various tests with the state-of-the-art white dwarf optical spectroscopy and pulsar radio timing observations, in order to get new robust limits of $\bar s^{\rm TT}$. With the isotropic cosmic microwave background as a preferred frame, we get $|\bar s^{\rm TT}| < 1.6 \times 10^{-5}$ (95\% CL), and without assuming the existence of a preferred frame, we get $|\bar s^{\rm TT}| < 2.8 \times 10^{-4}$ (95\% CL). These two limits are respectively about 500 times and 30 times better than the current best limit.
- Standard-model extension (SME) is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model (SM) and general relativity (GR). In the pure-gravity sector of minimal SME (mSME), nine coefficients describe dominant observable deviations from GR. We systematically implemented twenty-seven tests from thirteen pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of mSME with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravity.
- Jul 11 2013 gr-qc astro-ph.SR arXiv:1307.2637v1Within the parameterized post-Newtonian (PPN) formalism, there could be an anisotropy of local gravity induced by an external matter distribution, even for a fully conservative metric theory of gravity. It reflects the breakdown of the local position invariance of gravity and, within the PPN formalism, is characterized by the Whitehead parameter $\xi$. We present three different kinds of observation, from the Solar system and radio pulsars, to constrain it. The most stringent limit comes from recent results on the extremely stable pulse profiles of solitary millisecond pulsars, that gives $|\hat \xi| < 3.9 \times 10^{-9}$ (95% CL), where the hat denotes the strong-field generalization of $\xi$. This limit is six orders of magnitude more constraining than the current best limit from superconducting gravimeter experiments. It can be converted into an upper limit of $\sim 4 \times 10^{-16}$ on the spatial anisotropy of the gravitational constant.
- Gravitational preferred frame effects are generally predicted by alternative theories that exhibit an isotropic violation of local Lorentz invariance of gravity. They are described by three parameters in the parametrized post-Newtonian formalism. One of their strong-field generalizations, $\hat \alpha_2$, induces a precession of a pulsar's spin around its movement direction with respect to the preferred frame. We constrain $\hat \alpha_2$ by using the non-detection of such a precession using the characteristics of the pulse profile. In our analysis we use a large number of observations from the 100-m Effelsberg radio telescope, which cover a time span of approximately 15 years. By combining data from two solitary millisecond pulsars, PSRs B1937+21 and J1744-1134, we get a limit of $|\hat \alpha_2| < 1.6 \times 10^{-9}$ at 95% confidence level, which is more than two orders of magnitude better than its best weak-field counterpart from the Solar system.
- Nov 29 2012 gr-qc astro-ph.GA arXiv:1211.6558v1New tests are proposed to constrain possible deviations from local Lorentz invariance and local position invariance in the gravity sector. By using precise timing results of two binary pulsars, i.e., PSRs J1012+5307 and J1738+0333, we are able to constrain (strong-field) parametrized post-Newtonian parameters $\hat{\alpha}_1$, $\hat{\alpha}_2$, $\hat{\xi}$ to high precision, among which, $|\hat{\xi}| < 3.1\times10^{-4}$ (95% C.L.) is reported here for the first time.
- Sep 25 2012 gr-qc astro-ph.HE arXiv:1209.5171v1Preferred frame effects (PFEs) are predicted by a number of alternative gravity theories which include vector or additional tensor fields, besides the canonical metric tensor. In the framework of parametrized post-Newtonian (PPN) formalism, we investigate PFEs in the orbital dynamics of binary pulsars, characterized by the two strong-field PPN parameters, \alpha_1 and \alpha_2. In the limit of a small orbital eccentricity, \alpha_1 and \alpha_2 contributions decouple. By utilizing recent radio timing results and optical observations of PSRs J1012+5307 and J1738+0333, we obtained the best limits of \alpha_1 and \alpha_2 in the strong-field regime. The constraint on \alpha_1 also surpasses its counterpart in the weak-field regime.
- Sep 21 2012 gr-qc astro-ph.SR arXiv:1209.4503v1In the post-Newtonian parametrization of semi-conservative gravity theories, local Lorentz invariance (LLI) violation is characterized by two parameters, alpha_1 and alpha_2. In binary pulsars the isotropic violation of LLI in the gravitational sector leads to characteristic preferred frame effects (PFEs) in the orbital dynamics, if the barycenter of the binary is moving relative to the preferred frame with a velocity w. For small-eccentricity binaries, the effects induced by alpha_1 and alpha_2 decouple, and can therefore be tested independently. We use recent timing results of two compact pulsar-white dwarf binaries with known 3D velocity, PSRs J1012+5307 and J1738+0333, to constrain PFEs for strongly self-gravitating bodies. We derive a limit |alpha_2| < 1.8e-4 (95% CL), which is the most constraining limit for strongly self-gravitating systems up to now. Concerning alpha_1, we propose a new, robust method to constrain this parameter. Our most conservative result, alpha_1 = -0.4^+3.7_-3.1 e-5 (95% CL) from PSR J1738+0333, constitutes a significant improvement compared to current most stringent limits obtained both in Solar system and binary pulsar tests. We also derive corresponding limits for alpha_1 and alpha_2 for a preferred frame that is at rest with respect to our Galaxy, and preferred frames that locally co-move with the rotation of our Galaxy. (Abridged)
- Doubly special relativity (DSR), with both an invariant velocity and an invariant length scale, elegantly preserves the principle of relativity between moving observers, and appears as a promising candidate of the quantum theory of gravity. We study the modifications of photon gas thermodynamics in the framework of DSR with an invariant length $|\lambda|$, after properly taking into account the effects of modified dispersion relation, upper bounded energy-momentum space, and deformed integration measure. We show that with a positive $\lambda$, the grand partition function, the energy density, the specific heat, the entropy, and the pressure are smaller than those of special relativity (SR), while the velocity of photons and the ratio of pressure to energy are larger. In contrast, with a negative $\lambda$, the quantum gravity effects show up in the opposite direction. However, these effects only manifest themselves significantly when the temperature is larger than $10^{-3} E_{\rm P}$. Thus, DSR can have considerable influence on the early universe in cosmological study.
- The newly proposed entropic gravity suggests gravity as an emergent force rather than a fundamental one. In this approach, the Newtonian constant $G$ does not play a fundamental role any more, and a new fundamental constant is required to replace its position. This request also arises from some philosophical considerations to contemplate the physical foundations for the unification of theories. We here consider the suggestion to derive $G$ from more fundamental quantities in the presence of a new fundamental length scale $l$, which is suspected to originate from the structure of quantum space-time, and can be measured directly from Lorentz-violating observations. Our results are relevant to the fundamental understanding of physics, and more practically, of natural units, as well as explanations of experimental constraints in searching for Lorentz violation.
- Lorentz violation (LV) is predicted by some quantum gravity theories, where photon dispersion relation is modified, and the speed of light becomes energy-dependent. Consequently, it results in a tiny time delay between high energy photons and low energy ones. Very high energy (VHE) photon emissions from cosmological distance can amplify these tiny LV effects into observable quantities. Here we analyze four VHE $\gamma$-ray bursts (GRBs) from Fermi observations, and briefly review the constraints from three TeV flares of active galactic nuclei (AGNs) as well. One step further, we present a first robust analysis of VHE GRBs taking the intrinsic time lag caused by sources into account, and give an estimate to quantum gravity energy $\sim 2 \times 10^{17}$ GeV for linear energy dependence, and $\sim 5 \times 10^9$ GeV for quadratic dependence. However, the statistics is not sufficient due to the lack of data, and further observational results are desired to constrain LV effects better.