results for au:Pratten_G in:gr-qc

- Feb 15 2018 gr-qc arXiv:1802.05241v1We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0e-8, +1e-9] Hz/s. Potential signals could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h_0 is 4e-25 near 170 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 1.3e-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ~1.5e-25.
- Nov 16 2017 astro-ph.HE gr-qc arXiv:1711.05578v1On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through gravitational waves with electromagnetic observations. The source's luminosity distance is $340^{+140}_{-140}$ Mpc, corresponding to redshift $0.07^{+0.03}_{-0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity.
- Oct 26 2017 astro-ph.HE gr-qc arXiv:1710.09320v1The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the equation of state of nuclear matter. This could be either a black hole or a neutron star (NS), with the latter being either long-lived or too massive for stability implying delayed collapse to a black hole. Here, we present a search for gravitational waves from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short ($\lesssim1$ s) and intermediate-duration ($\lesssim 500$ s) signals, which includes gravitational-wave emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root-sum-square of the gravitational-wave strain emitted from 1--4 kHz is $h_{\rm rss}^{50\%}=2.1\times 10^{-22}$ Hz$^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is $h_{\rm rss}^{50\%}=8.4\times 10^{-22}$ Hz$^{-1/2}$ for a millisecond magnetar model, and $h_{\rm rss}^{50\%}=5.9\times 10^{-22}$ Hz$^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.
- Oct 17 2017 gr-qc arXiv:1710.05837v1The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.8_{-1.3}^{+2.7} \times 10^{-9}$ with $90\%$ confidence, compared with $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.1_{-0.7}^{+1.2} \times 10^{-9}$ from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
- Oct 09 2017 gr-qc astro-ph.HE arXiv:1710.02327v2Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, \it narrow-band analyses methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of eleven pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched: in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.
- Sep 28 2017 gr-qc astro-ph.HE arXiv:1709.09660v3On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm-rate of $\lesssim$ 1 in 27000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are $30.5_{-3.0}^{+5.7}$ Msun and $25.3_{-4.2}^{+2.8}$ Msun (at the 90% credible level). The luminosity distance of the source is $540_{-210}^{+130}~\mathrm{Mpc}$, corresponding to a redshift of $z=0.11_{-0.04}^{+0.03}$. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg$^2$ using only the two LIGO detectors to 60 deg$^2$ using all three detectors. For the first time, we can test the nature of gravitational wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.
- Mar 21 2017 gr-qc arXiv:1703.06814v1We present a comprehensive comparison of the spin-aligned effective-one-body (EOB) waveform model of Nagar et al. [Phys. Rev. D93, 044046 (2016)], informed using 40 numerical-relativity (NR) datasets, against a set of 149, $\ell=m=2$, NR waveforms freely available through the Simulation Extreme Spacetime (SXS) catalog. We find that, without further calibration, these EOBNR waveforms have unfaithfulness (at design Advanced-LIGO sensitivity and evaluated with total mass $M$ varying as $10M_\odot\leq M \leq 200M_\odot$) always below $1\%$ against all NR waveforms except for three outliers, that still never exceed the $3\%$ level; with a minimal retuning of the (effective) next-to-next-to-next-to-leading-order spin-orbit coupling parameter for the non-equal-mass and non-equal-spin sector, that only needs three more NR waveforms, one is left with another two (though different) outliers, with maximal unfaithfulness of up to only $2\%$ for a total mass of $200M_\odot$. We show this is the effect of slight inaccuracies in the phenomenological description of the postmerger waveform of Del Pozzo and Nagar [arXiv:1606.03952] that was constructed by interpolating over only 40NR simulations. We argue that this is easily fixed by using either an alternative ringdown description (e.g., the superposition of quasi-normal-modes) or an improved version of the phenomenological representation. By analyzing a NR waveform with mass ratio $8$ and dimensionless spins $+0.85$ obtained with the BAM code, we conclude that the model would benefit from NR simulations specifically targeted at improving the postmerger-ringdown phenomenological fits for mass ratios $\gtrsim 8$ and spins $\gtrsim 0.8$.
- Jan 02 2017 gr-qc astro-ph.HE arXiv:1612.09566v2For a brief moment, a binary black hole (BBH) merger can be the most powerful astrophysical event in the visible universe. Here we present a model fit for this gravitational-wave peak luminosity of nonprecessing quasicircular BBH systems as a function of the masses and spins of the component black holes, based on numerical relativity (NR) simulations and the hierarchical fitting approach introduced by X. Jiménez-Forteza et al. [Phys. Rev. D 95, 064024 (2017), arXiv:1611.00332]. This fit improves over previous results in accuracy and parameter-space coverage and can be used to infer posterior distributions for the peak luminosity of future astrophysical signals like GW150914 and GW151226. The model is calibrated to the l<=6 modes of 378 nonprecessing NR simulations up to mass ratios of 18 and dimensionless spin magnitudes up to 0.995, and includes unequal-spin effects. We also constrain the fit to perturbative numerical results for large mass ratios. Studies of key contributions to the uncertainty in NR peak luminosities, such as (i) mode selection, (ii) finite resolution, (iii) finite extraction radius, and (iv) different methods for converting NR waveforms to luminosity, allow us to use NR simulations from four different codes as a homogeneous calibration set. This study of systematic fits to combined NR and large-mass-ratio data, including higher modes, also paves the way for improved inspiral-merger-ringdown waveform models.
- May 19 2016 astro-ph.CO gr-qc arXiv:1605.05662v3Lensing of the CMB is affected by post-Born lensing, producing corrections to the convergence power spectrum and introducing field rotation. We show numerically that the lensing convergence power spectrum is affected at the $\lesssim 0.2\%$ level on accessible scales, and that this correction and the field rotation are negligible for observations with arcminute beam and noise levels $\gtrsim 1 \mu {\text{K}}\,{\text{arcmin}} $. The field rotation generates $\sim 2.5\%$ of the total lensing B-mode polarization amplitude ($0.2\%$ in power on small scales), but has a blue spectrum on large scales, making it highly subdominant to the convergence B modes on scales where they are a source of confusion for the signal from primordial gravitational waves. Since the post-Born signal is non-linear, it also generates a bispectrum with the convergence. We show that the post-Born contributions to the bispectrum substantially change the shape predicted from large-scale structure non-linearities alone, and hence must be included to estimate the expected total signal and impact of bispectrum biases on CMB lensing reconstruction quadratic estimators and other observables. The field-rotation power spectrum only becomes potentially detectable for noise levels $\ll 1 \mu {\text{K}}\,{\text{arcmin}}$, but its bispectrum with the convergence may be observable at $\sim 3\sigma$ with Stage IV observations. Rotation-induced and convergence-induced B modes are slightly correlated by the bispectrum, and the bispectrum also produces additional contributions to the lensed BB power spectrum.
- We study Modified Gravity (MG) theories by modelling the redshifted matter power spectrum in a spherical Fourier-Bessel (sFB) basis. We use a fully non-linear description of the real-space matter power-spectrum and include the lowest-order redshift-space correction (Kaiser effect), taking into account some additional non-linear contributions. Ignoring relativistic corrections, which are not expected to play an important role for a shallow survey, we analyse two different modified gravity scenarios, namely the generalised Dilaton scalar-tensor theories and the $f({R})$ models in the large curvature regime. We compute the 3D power spectrum ${\cal C}^s_{\ell}(k_1,k_2)$ for various such MG theories with and without redshift space distortions, assuming precise knowledge of background cosmological parameters. Using an all-sky spectroscopic survey with Gaussian selection function $\varphi(r)\propto \exp(-{r^2 / r^2_0})$, $r_0 = 150 \, h^{-1} \, {\textrm{Mpc}}$, and number density of galaxies $\bar {\textrm{N}} =10^{-4}\;{\textrm{Mpc}}^{-3}$, we use a $\chi^2$ analysis, and find that the lower-order $(\ell \leq 25)$ multipoles of ${\cal C}^s_\ell(k,k')$ (with radial modes restricted to $k < 0.2 \, h \,{\textrm{Mpc}}^{-1}$) can constraint the parameter $f_{R_0}$ at a level of $2\times 10^{-5} (3\times 10^{-5})$ with $3 \sigma$ confidence for $n=1(2)$. Combining constraints from higher $\ell > 25$ modes can further reduce the error bars and thus in principle make cosmological gravity constraints competitive with solar system tests. However this will require an accurate modelling of non-linear redshift space distortions. Using a tomographic $\beta(a)$-$m(a)$ parameterization we also derive constraints on specific parameters describing the Dilaton models of modified gravity.
- Mar 12 2015 gr-qc arXiv:1503.03435v2In this paper we revisit non-spherical perturbations of the Schwarzschild black hole in the context of $f(R)$ gravity. Previous studies were able to demonstrate the stability of the $f(R)$ Schwarzschild black hole against gravitational perturbations in both the even and odd parity sectors. In particular, it was seen that the Regge-Wheeler and Zerilli equations in $f(R)$ gravity obey the same equations as their General Relativity counterparts. More recently, the 1+1+2 semi-tetrad formalism has been used to derive a set of two wave equations: one for transverse, trace-free (tensor) perturbations and one for the additional scalar modes that characterise fourth-order theories of gravitation. The master variable governing tensor perturbations was shown to be a modified Regge-Wheeler tensor obeying the same equation as in General Relativity. However, it is well known that there is a non-uniqueness in the definition of the master variable. In this paper we derive a set of two perturbation variables and their concomitant wave equations that describe gravitational perturbations in a covariant and gauge invariant manner. These variables can be related to the Newman-Penrose (NP) Weyl scalars as well as the master variables from the 2+2 formalism.
- Aug 16 2013 gr-qc arXiv:1308.3271v2The construction of a model of the gravitational-wave (GW) signal from generic configurations of spinning-black-hole binaries, through inspiral, merger and ringdown, is one of the most pressing theoretical problems in the build-up to the era of GW astronomy. We present the first such model in the frequency domain, "PhenomP", which captures the basic phenomenology of the seven-dimensional parameter space of binary configurations with only three key physical parameters. Two of these (the binary's mass ratio and an effective total spin parallel to the orbital angular momentum, which determines the inspiral rate) define an underlying non-precessing-binary model. The non-precessing-binary waveforms are then "twisted up" with approximate expressions for the precessional motion, which require only one additional physical parameter, an effective precession spin, $\chi_p$. All other parameters (total mass, sky location, orientation and polarisation, and initial phase) can be specified trivially. The model is constructed in the frequency domain, which will be essential for efficient GW searches and source measurements. We have tested the model's fidelity for GW applications by comparison against hybrid post-Newtonian-numerical-relativity waveforms at a variety of configurations --although we did not use these numerical simulations in the construction of the model. Our model can be used to develop GW searches, to study the implications for astrophysical measurements, and as a simple conceptual framework to form the basis of generic-binary waveform modelling in the advanced-detector era.