results for au:Peterer_M in:quant-ph

- Mar 20 2017 quant-ph arXiv:1703.05828v1Superconducting circuits are well established as a strong candidate platform for the development of quantum computing. In order to advance to a practically useful level, architectures are needed which combine arrays of many qubits with selective qubit control and readout, without compromising on coherence. Here we present a coaxial circuit QED architecture in which qubit and resonator are fabricated on opposing sides of a single chip, and control and readout wiring are provided by coaxial wiring running perpendicular to the chip plane. We present characterisation measurements of a fabricated device in good agreement with simulated parameters and demonstrating energy relaxation and dephasing times of $T_1 = 4.1\,\mu$s and $T_2 = 5.7\,\mu$s respectively. The architecture allows for scaling to large arrays of selectively controlled and measured qubits with the advantage of all wiring being out of the plane.
- Dec 01 2016 quant-ph cond-mat.mes-hall arXiv:1611.10354v2We explore the joint activated dynamics exhibited by two quantum degrees of freedom: a cavity mode oscillator which is strongly coupled to a superconducting qubit in the strongly coherently driven dispersive regime. Dynamical simulations and complementary measurements show a range of parameters where both the cavity and the qubit exhibit sudden simultaneous switching between two metastable states. This manifests in ensemble averaged amplitudes of both the cavity and qubit exhibiting a partial coherent cancellation. Transmission measurements of driven microwave cavities coupled to transmon qubits show detailed features which agree with the theory in the regime of simultaneous switching.
- Oct 19 2015 quant-ph cond-mat.mes-hall arXiv:1510.04965v1We present systematic measurements of the quality factors of surface acoustic wave (SAW) resonators on ST-X quartz in the gigahertz range at a temperature of $10 \, \textrm{mK}$. We demonstrate a internal quality factor $Q_\mathrm{i}$ approaching $0.5$ million at $0.5 \, \textrm{GHz}$ and show that $Q_\mathrm{i}\geq4.0\times10^4$ is achievable up to $4.4 \, \textrm{GHz}$. We show evidence for a polynomial dependence of propagation loss on frequency, as well as a weak drive power dependence of $Q_\mathrm{i}$ that saturates at low power, the latter being consistent with coupling to a bath of two-level systems. Our results indicate that SAW resonators are promising devices for integration with superconducting quantum circuits.
- Sep 23 2014 quant-ph cond-mat.mes-hall arXiv:1409.6031v2We present measurements of coherence and successive decay dynamics of higher energy levels of a superconducting transmon qubit. By applying consecutive $\pi$-pulses for each sequential transition frequency, we excite the qubit from the ground state up to its fourth excited level and characterize the decay and coherence of each state. We find the decay to proceed mainly sequentially, with relaxation times in excess of 20 $\mu$s for all transitions. We also provide a direct measurement of the charge dispersion of these levels by analyzing beating patterns in Ramsey fringes. The results demonstrate the feasibility of using higher levels in transmon qubits for encoding quantum information.