results for au:Nissanke_S in:gr-qc

- Feb 15 2018 gr-qc arXiv:1802.05241v1We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0e-8, +1e-9] Hz/s. Potential signals could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h_0 is 4e-25 near 170 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 1.3e-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ~1.5e-25.
- Dec 05 2017 gr-qc astro-ph.CO arXiv:1712.01168v1Cosmic strings are topological defects which can be formed in GUT-scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension $G\mu$ and the intercommutation probability, using not only the burst analysis performed on the O1 data set, but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and Big-Bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.
- GW170817 is the first gravitational wave detection of a binary neutron star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 Mpc. It has been proposed that the observed gamma-ray, X-ray and radio emission is due to an ultra-relativistic jet launched during the merger, directed away from our line of sight. The presence of such a jet is predicted from models positing neutron star mergers as the central engines driving short-hard gamma-ray bursts (SGRBs). Here we show that the radio light curve of GW170817 has no direct signature of an off-axis jet afterglow. While we cannot rule out the existence of a jet pointing elsewhere, the observed gamma-rays could not have originated from such a jet. Instead, the radio data requires a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high velocity tail of the neutron-rich material dynamically ejected during the merger or a cocoon of material that breaks out when a jet transfers its energy to the dynamical ejecta. The cocoon scenario can explain the radio light curve of GW170817 as well as the gamma-rays and X-rays (possibly also ultraviolet and optical emission), and hence is the model most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron star mergers, giving rise to a heretofore unidentified population of radio, ultraviolet, X-ray and gamma-ray transients in the local universe.
- Nov 21 2017 gr-qc astro-ph.HE arXiv:1711.06843v1We present the results of a search for long-duration gravitational wave transients in the data of the LIGO Hanford and LIGO Livingston second generation detectors between September 2015 and January 2016, with a total observational time of 49 days. The search targets gravitational wave transients of \unit[10 -- 500]s duration in a frequency band of \unit[24 -- 2048]Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. No significant events were observed. %All candidate triggers were consistent with the expected background, As a result we set 90\% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also show that the search is sensitive to sources in the Galaxy emitting at least $\sim$ \unit[$10^{-8}$]$\mathrm{M_{\odot} c^2}$ in gravitational waves.
- Nov 16 2017 astro-ph.HE gr-qc arXiv:1711.05578v1On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through gravitational waves with electromagnetic observations. The source's luminosity distance is $340^{+140}_{-140}$ Mpc, corresponding to redshift $0.07^{+0.03}_{-0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity.
- Oct 26 2017 astro-ph.HE gr-qc arXiv:1710.09320v1The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the equation of state of nuclear matter. This could be either a black hole or a neutron star (NS), with the latter being either long-lived or too massive for stability implying delayed collapse to a black hole. Here, we present a search for gravitational waves from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short ($\lesssim1$ s) and intermediate-duration ($\lesssim 500$ s) signals, which includes gravitational-wave emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root-sum-square of the gravitational-wave strain emitted from 1--4 kHz is $h_{\rm rss}^{50\%}=2.1\times 10^{-22}$ Hz$^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is $h_{\rm rss}^{50\%}=8.4\times 10^{-22}$ Hz$^{-1/2}$ for a millisecond magnetar model, and $h_{\rm rss}^{50\%}=5.9\times 10^{-22}$ Hz$^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.
- Oct 17 2017 gr-qc arXiv:1710.05837v1The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.8_{-1.3}^{+2.7} \times 10^{-9}$ with $90\%$ confidence, compared with $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.1_{-0.7}^{+1.2} \times 10^{-9}$ from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
- Oct 09 2017 gr-qc astro-ph.IM arXiv:1710.02185v3The first observing run of Advanced LIGO spanned 4 months, from September 12, 2015 to January 19, 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce the sensitivity of a search. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. In this paper, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline, which is a python-based code package used to search for gravitational wave signals from compact binary coalescences, is used as a metric for improvement. GW150914 was a loud enough signal that removing noisy data did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by more than two orders of magnitude, from 1 in 770 years to less than 1 in 186000 years.
- Oct 09 2017 gr-qc astro-ph.HE arXiv:1710.02327v2Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, \it narrow-band analyses methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of eleven pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched: in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.
- Sep 28 2017 gr-qc arXiv:1709.09203v1We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously-published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity.
- Sep 28 2017 gr-qc astro-ph.HE arXiv:1709.09660v3On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm-rate of $\lesssim$ 1 in 27000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are $30.5_{-3.0}^{+5.7}$ Msun and $25.3_{-4.2}^{+2.8}$ Msun (at the 90% credible level). The luminosity distance of the source is $540_{-210}^{+130}~\mathrm{Mpc}$, corresponding to a redshift of $z=0.11_{-0.04}^{+0.03}$. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg$^2$ using only the two LIGO detectors to 60 deg$^2$ using all three detectors. For the first time, we can test the nature of gravitational wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.
- Jul 11 2017 gr-qc astro-ph.IM arXiv:1707.02667v2We report on an all-sky search for periodic gravitational waves in the frequency band 20-475 Hz and with a frequency time derivative in the range of [-1.0, +0.1]e-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are 4e-25 near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest upper limits obtained are 1.5e-25. These upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest upper limits obtained for the strain amplitude are 2.5e-25.
- Jul 11 2017 gr-qc arXiv:1707.02669v2We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1/$\sqrt{{\textrm{Hz}}}$]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of $1.8 \times 10^{-25}$. At the low end of our frequency range, 20 Hz, we achieve upper limits of $3.9 \times 10^{-24}$. At 55 Hz we can exclude sources with ellipticities greater than $10^{-5}$ within 100 pc of Earth with fiducial value of the principal moment of inertia of $10^{38} \textrm{kg m}^2$.
- Jun 13 2017 astro-ph.HE gr-qc arXiv:1706.03119v3We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modelled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range from 25 Hz to 2000 Hz, spanning the current observationally-constrained range of the binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at 175 Hz, with comparable limits set across the most sensitive frequency range from 100 Hz to 200 Hz. At this frequency, the 95 pct upper limit on signal amplitude h0 is 2.3e-25 marginalized over the unknown inclination angle of the neutron star's spin, and 8.03e-26 assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3-4 stronger than those set by other analyses of the same data, and a factor of about 7 stronger than the best upper limits set using initial LIGO data. In the vicinity of 100 Hz, the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on inclination angle, if the most likely inclination angle of 44 degrees is assumed, they are within a factor of 1.7.
- Jun 07 2017 gr-qc astro-ph.HE arXiv:1706.01812v1We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10:11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70,000 years. The inferred component black hole masses are $31.2^{+8.4}_{-6.0}\,M_\odot$ and $19.4^{+5.3}_{-5.9}\,M_\odot$ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, $\chi_\mathrm{eff} = -0.12^{+0.21}_{-0.30}.$ This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is $880^{+450}_{-390}~\mathrm{Mpc}$ corresponding to a redshift of $z = 0.18^{+0.08}_{-0.07}$. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to $m_g \le 7.7 \times 10^{-23}~\mathrm{eV}/c^2$. In all cases, we find that GW170104 is consistent with general relativity.
- Apr 18 2017 gr-qc arXiv:1704.04628v4During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals and GW151226, produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected, therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass $100\,M_\odot$, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than $0.93~\mathrm{Gpc^{-3}\,yr}^{-1}$ in comoving units at the $90\%$ confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.
- Apr 13 2017 gr-qc arXiv:1704.03719v3Results are presented from a semi-coherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run (O1). The search combines a frequency domain matched filter (Bessel-weighted $\mathcal{F}$-statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No evidence of gravitational waves is found in the frequency range 60-650 Hz. Frequentist 95% confidence strain upper limits, $h_0^{95\%} = 4.0\times10^{-25}$, $8.3\times10^{-25}$, and $3.0\times10^{-25}$ for electromagnetically restricted source orientation, unknown polarization, and circular polarization, respectively, are reported at 106 Hz. They are $\leq 10$ times higher than the theoretical torque-balance limit at 106 Hz.
- Jan 27 2017 astro-ph.HE gr-qc arXiv:1701.07709v5We present the result of searches for gravitational waves from 200 pulsars using data from the first observing run of the Advanced LIGO detectors. We find no significant evidence for a gravitational-wave signal from any of these pulsars, but we are able to set the most constraining upper limits yet on their gravitational-wave amplitudes and ellipticities. For eight of these pulsars, our upper limits give bounds that are improvements over the indirect spin-down limit values. For another 32, we are within a factor of 10 of the spin-down limit, and it is likely that some of these will be reachable in future runs of the advanced detector. Taken as a whole, these new results improve on previous limits by more than a factor of two.
- We employ gravitational-wave radiometry to map the gravitational waves stochastic background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from Advanced LIGO's first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20 - 1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range $F_{\alpha,\Theta}(f) < (0.1 - 56) \times 10^{-8}$ erg cm$^{-2}$ s$^{-1}$ Hz$^{-1}$ (f/25 Hz)$^{\alpha-1}$ depending on the sky location $\Theta$ and the spectral power index $\alpha$. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of $\Omega(f,\Theta) < (0.39-7.6) \times 10^{-8}$ sr$^{-1}$ (f/25 Hz)$^\alpha$ depending on $\Theta$ and $\alpha$. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of $h_0 <$ (6.7, 5.5, and 7.0) $\times 10^{-25}$ respectively, at the most sensitive detector frequencies between 130 - 175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.
- A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced LIGO's first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be $\Omega_0<1.7\times 10^{-7}$ with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ~33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
- Nov 24 2016 gr-qc astro-ph.HE arXiv:1611.07531v2Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analyses on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than $\sim$0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.
- Nov 24 2016 astro-ph.HE gr-qc arXiv:1611.07947v3We present the results of the search for gravitational waves (GWs) associated with $\gamma$-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 $\gamma$-ray bursts for which LIGO data are available with sufficient duration. For all $\gamma$-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of $10^{-2}M_\odot c^2$ were emitted within the $16$-$500\,$Hz band, and we find a median 90% confidence limit of 71$\,$Mpc at 150$\,$Hz. For the subset of 19 short/hard $\gamma$-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90$\,$Mpc for binary neutron star (BNS) coalescences, and 150 and 139$\,$Mpc for neutron star-black hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of 54$\,$Mpc ($z=0.0124$). Assuming the $\gamma$-ray emission is beamed with a jet half-opening angle $\leq 30^{\circ}$, we exclude a BNS and a neutron star-black hole in NGC 3313 as the progenitor of this event with confidence $>99$%. Further, we exclude such progenitors up to a distance of 102$\,$Mpc and 170$\,$Mpc, respectively.
- Nov 10 2016 gr-qc astro-ph.HE arXiv:1611.02972v1We present the results from an all-sky search for short-duration gravitational waves in the data of the first run of the Advanced LIGO detectors between September 2015 and January 2016. The search algorithms use minimal assumptions on the signal morphology, so they are sensitive to a wide range of sources emitting gravitational waves. The analyses target transient signals with duration ranging from milliseconds to seconds over the frequency band of 32 to 4096 Hz. The first observed gravitational-wave event, GW150914, has been detected with high confidence in this search; other known gravitational-wave events fall below the search's sensitivity. Besides GW150914, all of the search results are consistent with the expected rate of accidental noise coincidences. Finally, we estimate rate-density limits for a broad range of non-BBH transient gravitational-wave sources as a function of their gravitational radiation emission energy and their characteristic frequency. These rate-density upper-limits are stricter than those previously published by an order-of-magnitude.
- Aug 08 2016 gr-qc arXiv:1608.01940v4The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere,in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 Msun, still orbited each other as close as ~350 km apart, and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves.
- We report here the non-detection of gravitational waves from the merger of binary neutron star systems and neutron-star--black-hole systems during the first observing run of Advanced LIGO. In particular we searched for gravitational wave signals from binary neutron star systems with component masses $\in [1,3] M_{\odot}$ and component dimensionless spins $< 0.05$. We also searched for neutron-star--black-hole systems with the same neutron star parameters, black hole mass $\in [2,99] M_{\odot}$ and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems, and find that they could have detected the merger of binary neutron star systems with component mass distributions of $1.35\pm0.13 M_{\odot}$ at a volume-weighted average distance of $\sim$ 70Mpc, and for neutron-star--black-hole systems with neutron star masses of $1.4M_\odot$ and black hole masses of at least $5M_\odot$, a volume-weighted average distance of at least $\sim$ 110Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc$^{-3}$yr$^{-1}$ for binary-neutron star systems and less than 3,600 Gpc$^{-3}$yr$^{-1}$ for neutron-star--black-hole systems. We find that if no detection of neutron-star binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of $10^{+20}_{-7}$Gpc$^{-3}$yr$^{-1}$ short gamma ray bursts beamed towards the Earth and assuming that all short gamma-ray bursts have binary-neutron-star (neutron-star--black-hole) progenitors we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than ${2.3^{+1.7}_{-1.1}}^{\circ}$ (${4.3^{+3.1}_{-1.9}}^{\circ}$).
- Jul 11 2016 gr-qc astro-ph.HE arXiv:1607.02216v1We describe a directed search for continuous gravitational waves in data from the sixth LIGO science run. The target was the nearby globular cluster NGC 6544 at a distance of 2.7 kpc. The search covered a broad band of frequencies along with first and second frequency derivatives for a fixed sky position. The search coherently integrated data from the two LIGO interferometers over a time span of 9.2 days using the matched-filtering F-statistic. We found no gravitational-wave signals and set 95% confidence upper limits as stringent as 6.0 X 10^-25 on intrinsic strain and 8.5 X 10^-6 on fiducial ellipticity. These values beat the indirect limits from energy conservation for stars with characteristic spindown ages older than 300 years and are within the range of theoretical predictions for possible neutron-star ellipticities. An important feature of this search was use of a barycentric resampling algorithm which substantially reduced computational cost; this method will be used extensively in searches of Advanced LIGO and Virgo detector data.
- Jun 16 2016 gr-qc astro-ph.CO arXiv:1606.04856v3The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to $100 M_\odot$ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than $5\sigma$ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range $9-240 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.
- We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, accounting for all the spin-weighted quadrupolar modes, and separately accounting for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported in LVC_PE[1] (at 90% confidence), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Followup simulations performed using previously-estimated binary parameters most resemble the data. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz ∈[64 - 82M_⊙], mass ratio q = m2/m1 ∈[0.6,1], and effective aligned spin \chi_eff ∈[-0.3, 0.2], where \chi_eff = (S1/m1 + S2/m2) ⋅\hatL /M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and \chi_eff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole's redshifted mass is consistent with Mf,z between 64.0 - 73.5M_⊙and the final black hole's dimensionless spin parameter is consistent with af = 0.62 - 0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to LVC_PE[1].
- Jun 06 2016 gr-qc astro-ph.HE arXiv:1606.01210v1This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) on September 14, 2015 [1]. Reference presented parameter estimation [2] of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and a 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [2], and we quote updated component masses of $35^{+5}_{-3}\mathrm{M}_\odot$ and $30^{+3}_{-4}\mathrm{M}_\odot$ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate $0.65$ and a secondary spin estimate $0.75$ at 90% probability. Reference [2] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
- Jun 01 2016 astro-ph.HE gr-qc arXiv:1605.09395v2Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation. We explore the detectability of these synchrotron generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (i) sub-relativistic merger ejecta and (ii) ultra-relativistic jets. The former produces radio remnants on timescales of a few years and the latter produces $\gamma$-ray bursts in the direction of the jet and orphan-radio afterglows extending over wider angles on timescales of weeks. Based on the derived light curves, we suggest an optimized survey at $1.4$ GHz with five epochs separated by a logarithmic time interval. We estimate the detectability of the radio counterparts of simulated GW-merger events to be detected by advanced LIGO and Virgo by current and future radio facilities. The detectable distances for these GW merger events could be as high as 1 Gpc. $20$--$60\%$ of the long-lasting radio remnants will be detectable in the case of the moderate kinetic energy of $3\cdot 10^{50}$ erg and a circum-merger density of $0.1 {\rm cm^{-3}}$ or larger, while $5$--$20\%$ of the orphan radio afterglows with kinetic energy of $10^{48}$ erg will be detectable. The detection likelihood increases if one focuses on the well-localizable GW events. We discuss the background noise due to radio fluxes of host galaxies and false positives arising from extragalactic radio transients and variable Active Galactic Nuclei and we show that the quiet radio transient sky is of great advantage when searching for the radio counterparts.
- May 12 2016 gr-qc astro-ph.IM arXiv:1605.03233v2We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of $[-1.18, +1.00]\times 10^{-8}$ Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from the Initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude $h_0$ is ${9.7}\times 10^{-25}$ near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of ${5.5}\times 10^{-24}$. Both cases refer to all sky locations and entire range of frequency derivative values.
- May 09 2016 gr-qc astro-ph.HE arXiv:1605.01785v2We present results from a search for gravitational-wave bursts coincident with a set of two core-collapse supernovae observed between 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors.
- Apr 28 2016 astro-ph.HE gr-qc arXiv:1604.07864v3This Supplement provides supporting material for arXiv:1602.08492 . We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.
- Mar 25 2016 astro-ph.HE gr-qc arXiv:1603.07333v4The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO's sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.
- Mar 01 2016 astro-ph.HE gr-qc arXiv:1602.08492v4A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.
- Feb 12 2016 gr-qc astro-ph.HE arXiv:1602.03840v2On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be $<0.7$ (at 90% probability). The luminosity distance to the source is $410^{+160}_{-180}$ Mpc, corresponding to a redshift $0.09^{+0.03}_{-0.04}$ assuming standard cosmology. The source location is constrained to an annulus section of $610$ deg$^2$, primarily in the southern hemisphere. The binary merges into a black hole of $62^{+4}_{-4} M_\odot$ and spin $0.67^{+0.05}_{-0.07}$. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
- On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015. GW150914 was observed with a matched filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 \sigma.
- Feb 12 2016 astro-ph.HE gr-qc arXiv:1602.03842v3A transient gravitational-wave signal, GW150914, was identified in the twin Advanced LIGO detectors on September 14, 2015 at 09:50:45 UTC. To assess the implications of this discovery, the detectors remained in operation with unchanged configurations over a period of 39 d around the time of the signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false alarm rate (FAR) of $< 4.9 \times 10^{-6} \, \mathrm{yr}^{-1}$, yielding a $p$-value for GW150914 of $< 2 \times 10^{-7}$. Parameter estimation followup on this trigger identifies its source as a binary black hole (BBH) merger with component masses $(m_1, m_2) = \left(36^{+5}_{-4},29^{+4}_{-4}\right) \, M_\odot$ at redshift $z = 0.09^{+0.03}_{-0.04}$ (median and 90\% credible range). Here we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the Universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between $2$--$53 \, \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ (comoving frame). Incorporating all search triggers that pass a much lower threshold while accounting for the uncertainty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from $13$--$600 \, \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ depending on assumptions about the BBH mass distribution. All together, our various rate estimates fall in the conservative range $2$--$600 \, \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$.
- We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10 - 500 s in a frequency band of 40 - 1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between $3.4 \times 10^{-5}$ - $9.4 \times 10^{-4}$ Mpc$^{-3}$ yr$^{-1}$ at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.
- Dec 02 2014 gr-qc astro-ph.HE arXiv:1412.0605v1We present results of a search for continuously-emitted gravitational radiation, directed at the brightest low-mass X-ray binary, Scorpius X-1. Our semi-coherent analysis covers 10 days of LIGO S5 data ranging from 50-550 Hz, and performs an incoherent sum of coherent $\mathcal{F}$-statistic power distributed amongst frequency-modulated orbital sidebands. All candidates not removed at the veto stage were found to be consistent with noise at a 1% false alarm rate. We present Bayesian 95% confidence upper limits on gravitational-wave strain amplitude using two different prior distributions: a standard one, with no a priori assumptions about the orientation of Scorpius X-1; and an angle-restricted one, using a prior derived from electromagnetic observations. Median strain upper limits of 1.3e-24 and 8e-25 are reported at 150 Hz for the standard and angle-restricted searches respectively. This proof of principle analysis was limited to a short observation time by unknown effects of accretion on the intrinsic spin frequency of the neutron star, but improves upon previous upper limits by factors of ~1.4 for the standard, and 2.3 for the angle-restricted search at the sensitive region of the detector.
- In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95$\%$ confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.
- Mar 27 2014 astro-ph.HE gr-qc arXiv:1403.6639v2We present the results of a search for gravitational waves associated with 223 gamma-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational-wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational-wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational-wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational-wave data is available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational-wave emission energy of $10^{-2}M_{\odot}c^2$ at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational-wave detectors, and a resulting examination of prospects for the advanced gravitational-wave detectors.
- Recent observations have accumulated compelling evidence that some short gamma-ray bursts (SGRBs) are associated with the mergers of neutron star (NS) binaries. This would indicate that the SGRB event is associated with a gravitational-wave (GW) signal corresponding to the final inspiral of the compact binary. In addition, the radioactive decay of elements produced in NS binary mergers may result in transients visible in the optical and infrared with peak luminosities on hours-days timescales. Simultaneous observations of the inspiral GWs and signatures in the electromagnetic band may allow us to directly and independently determine both the luminosity distance and redshift to a binary. These standard sirens (the GW analog of standard candles) have the potential to provide an accurate measurement of the low-redshift Hubble flow. In addition, these systems are absolutely calibrated by general relativity, and therefore do not experience the same set of astrophysical systematics found in traditional standard candles, nor do the measurements rely on a distance ladder. We show that 15 observable GW and EM events should allow the Hubble constant to be measured with 5% precision using a network of detectors that includes advanced LIGO and Virgo. Measuring 30 beamed GW-SGRB events could constrain H_0 to better than 1%. When comparing to standard Gaussian likelihood analysis, we find that each event's non-Gaussian posterior in H_0 helps reduce the overall measurement errors in H_0 for an ensemble of NS binary mergers.
- May 27 2013 astro-ph.CO gr-qc arXiv:1305.5720v1The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions.
- Apr 03 2013 gr-qc astro-ph.HE arXiv:1304.0670v4We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 square degrees to 20 square degees requires at least three detectors of sensitivity within a factor of ~2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
- Combined gravitational-wave (GW) and electromagnetic (EM) observations of compact binary mergers should enable detailed studies of astrophysical processes in the strong-field gravity regime. Networks of GW interferometers have poor angular resolution on the sky and their EM signatures are predicted to be faint. Therefore, a challenging goal will be to unambiguously pinpoint the EM counterparts to GW mergers. We perform the first comprehensive end-to-end simulation that focuses on: i) GW sky localization, distance measures and volume errors with two compact binary populations and four different GW networks, ii) subsequent detectability by a slew of multiwavelength telescopes and, iii) final identification of the merger counterpart amidst a sea of possible astrophysical false-positives. First, we find that double neutron star (NS) binary mergers can be detected out to a maximum distance of 400 Mpc (or 750 Mpc) by three (or five) detector GW networks respectively. NS -- black-hole (BH) mergers can be detected a factor of 1.5 further out. The sky localization uncertainties for NS-BH mergers are 50--170 sq. deg. (or 6--65 sq. deg.) for a three (or five detector) GW network respectively. Second, we quantify relative fractions of optical counterparts that are detectable by different size telescopes. Third, we present five case studies to illustrate the diversity of challenges in secure identification of the EM counterpart at low and high Galactic latitudes. For the first time, we demonstrate how construction of low-latency GW volumes in conjunction with local universe galaxy catalogs can help solve the problem of false positives.
- Compact Galactic binaries where at least one member is a white dwarf or neutron star constitute the majority of individually detectable sources for future low-frequency space-based gravitational-wave (GW) observatories; they also form an unresolved continuum, the dominant Galactic foreground at frequencies below a few mHz. Due to the paucity of electromagnetic observations, the majority of studies of Galactic-binary populations so far have been based on population-synthesis simulations. However, recent surveys have reported several new detections of white-dwarf binaries, providing new constraints for population estimates. In this article, we evaluate the impact of revised local densities of interacting white-dwarf binaries on future GW observations. Specifically: we consider five scenarios that explain these densities with different assumptions on the formation of interacting systems; we simulate corresponding populations of detached and interacting white-dwarf binaries; we estimate the number of individually detectable GW sources and the magnitude of the confusion-noise foreground, as observed by space-based detectors with 5- and 1-Mkm arms. We confirm earlier estimates of thousands of detached-binary detections, but project only few ten to few hundred detections of interacting systems. This reduction is partly due to our assessment of detection prospects, based on the iterative identification and subtraction of bright sources with respect to both instrument and confusion noise. We also confirm earlier estimates for the confusion-noise foreground, except in one scenario that explains smaller local densities of interacting systems with smaller numbers of progenitor detached systems.
- The inspirals and mergers of compact binaries are among the most promising events for ground-based gravitational-wave (GW) observatories. The detection of electromagnetic (EM) signals from these sources would provide complementary information to the GW signal. It is therefore important to determine the ability of gravitational-wave detectors to localize compact binaries on the sky, so that they can be matched to their EM counterparts. We use Markov Chain Monte Carlo techniques to study sky localization using networks of ground-based interferometers. Using a coherent-network analysis, we find that the Laser Interferometer Gravitational Wave Observatory (LIGO)-Virgo network can localize 50% of their ~8 sigma detected neutron star binaries to better than 50 sq.deg. with 95% confidence region. The addition of the Large Scale Cryogenic Gravitational Wave Telescope (LCGT) and LIGO-Australia improves this to 12 sq.deg.. Using a more conservative coincident detection threshold, we find that 50% of detected neutron star binaries are localized to 13 sq.deg. using the LIGO-Virgo network, and to 3 sq.deg. using the LIGO-Virgo-LCGT-LIGO-Australia network. Our findings suggest that the coordination of GW observatories and EM facilities offers great promise.
- Suitability of post-Newtonian/numerical-relativity hybrid waveforms for gravitational wave detectorsFeb 26 2011 gr-qc astro-ph.HE arXiv:1102.5128v2This article presents a study of the sufficient accuracy of post-Newtonian and numerical relativity waveforms for the most demanding usage case: parameter estimation of strong sources in advanced gravitational wave detectors. For black hole binaries, these detectors require accurate waveform models which can be constructed by fusing an analytical post-Newtonian inspiral waveform with a numerical relativity merger-ringdown waveform. We perform a comprehensive analysis of errors that enter such "hybrid waveforms". We find that the post-Newtonian waveform must be aligned with the numerical relativity waveform to exquisite accuracy, about 1/100 of a gravitational wave cycle. Phase errors in the inspiral phase of the numerical relativity simulation must be controlled to less than about 0.1rad. (These numbers apply to moderately optimistic estimates about the number of GW sources; exceptionally strong signals require even smaller errors.) The dominant source of error arises from the inaccuracy of the investigated post-Newtonian Taylor-approximants. Using our error criterium, even at 3.5-th post-Newtonian order, hybridization has to be performed significantly before the start of the longest currently available numerical waveforms which cover 30 gravitational wave cycles. The current investigation is limited to the equal-mass, zero-spin case and does not take into account calibration errors of the gravitational wave detectors.
- Apr 08 2009 astro-ph.CO gr-qc arXiv:0904.1017v2Recent observations support the hypothesis that a large fraction of "short-hard" gamma-ray bursts (SHBs) are associated with compact binary inspiral. Since gravitational-wave (GW) measurements of well-localized inspiraling binaries can measure absolute source distances, simultaneous observation of a binary's GWs and SHB would allow us to independently determine both its luminosity distance and redshift. Such a "standard siren" (the GW analog of a standard candle) would provide an excellent probe of the relatively nearby universe's expansion, complementing other standard candles. In this paper, we examine binary measurement using a Markov Chain Monte Carlo technique to build the probability distributions describing measured parameters. We assume that each SHB observation gives both sky position and the time of coalescence, and we take both binary neutron stars and black hole-neutron star coalescences as plausible SHB progenitors. We examine how well parameters particularly distance) can be measured from GW observations of SHBs by a range of ground-based detector networks. We find that earlier estimates overstate how well distances can be measured, even at fairly large signal-to-noise ratio. The fundamental limitation to determining distance proves to be a degeneracy between distance and source inclination. Overcoming this limitation requires that we either break this degeneracy, or measure enough sources to broadly sample the inclination distribution. (Abridged)
- It is widely expected that the coming decade will witness the first direct detection of gravitational waves (GWs). The ground-based LIGO and Virgo GW observatories are being upgraded to advanced sensitivity, and are expected to observe a significant binary merger rate. The launch of The Laser Interferometer Space Antenna (LISA) would extend the GW window to low frequencies, opening new vistas on dynamical processes involving massive (M >~ 10^5 M_Sun) black holes. GW events are likely to be accompanied by electromagnetic (EM) counterparts and, since information carried electromagnetically is complementary to that carried gravitationally, a great deal can be learned about an event and its environment if it becomes possible to measure both forms of radiation in concert. Measurements of this kind will mark the dawn of trans-spectral astrophysics, bridging two distinct spectral bands of information. The aim of this whitepaper is to articulate future directions in both theory and observation that are likely to impact broad astrophysical inquiries of general interest. What will EM observations reflect on the nature and diversity of GW sources? Can GW sources be exploited as complementary probes of cosmology? What cross-facility coordination will expand the science returns of gravitational and electromagnetic observations?
- We regard binary black hole (BBH) merger as a map from a simple initial state (two Kerr black holes, with dimensionless spins \bf a and \bf b) to a simple final state (a Kerr black hole with mass m, dimensionless spin \bf s, and kick velocity \bf k). By expanding this map around \bf a = \bf b = 0 and applying symmetry constraints, we obtain a simple formalism that is remarkably successful at explaining existing BBH simulations. It also makes detailed predictions and suggests a more efficient way of mapping the parameter space of binary black hole merger. Since we rely on symmetry rather than dynamics, our expansion complements previous analytical techniques.
- Oct 03 2005 gr-qc arXiv:gr-qc/0509128v2Construction of astrophysically realistic initial data remains a central problem when modelling the merger and eventual coalescence of binary black holes in numerical relativity. The objective of this paper is to provide astrophysically realistic freely specifiable initial data for binary black hole systems in numerical relativity, which are in agreement with post-Newtonian results. Following the approach taken by Blanchet, we propose a particular solution to the time-asymmetric constraint equations, which represent a system of two moving black holes, in the form of the standard conformal decomposition of the spatial metric and the extrinsic curvature. The solution for the spatial metric is given in symmetric tracefree form, as well as in Dirac coordinates. We show that the solution differs from the usual post-Newtonian metric up to the 2PN order by a coordinate transformation. In addition, the solutions, defined at every point of space, differ at second post-Newtonian order from the exact, conformally flat, Bowen-York solution of the constraints.
- Mar 18 2005 gr-qc arXiv:gr-qc/0503075v2In the continuation of a preceding work, we derive a new expression for the metric in the near zone of an isolated matter system in post-Newtonian approximations of general relativity. The post-Newtonian metric, a solution of the field equations in harmonic coordinates, is formally valid up to any order, and is cast in the form of a particular solution of the wave equation, plus a specific homogeneous solution which ensures the asymptotic matching to the multipolar expansion of the gravitational field in the exterior of the system. The new form provides some insights on the structure of the post-Newtonian expansion in general relativity and the gravitational radiation reaction terms therein.
- Dec 06 2004 gr-qc arXiv:gr-qc/0412018v2We compute the radiation reaction force on the orbital motion of compact binaries to the 3.5 post-Newtonian (3.5PN) approximation, i.e. one PN order beyond the dominant effect. The method is based on a direct PN iteration of the near-zone metric and equations of motion of an extended isolated system, using appropriate ``asymptotically matched'' flat-space-time retarded potentials. The formalism is subsequently applied to binary systems of point particles, with the help of the Hadamard self-field regularisation. Our result is the 3.5PN acceleration term in a general harmonic coordinate frame. Restricting the expression to the centre-of-mass frame, we find perfect agreement with the result derived in a class of coordinate systems by Iyer and Will using the energy and angular momentum balance equations.