results for au:Mojica_S in:gr-qc

- Oct 31 2016 gr-qc arXiv:1610.09214v1Generalizations of the Schwarzschild and Kerr black holes are discussed in an astrophysically viable generalized theory of gravity, which includes higher curvature corrections in the form of the Gauss-Bonnet term, coupled to a dilaton. The angular momentum of these black holes can slightly exceed the Kerr bound. The location and the orbital frequency of particles in their innermost stable circular orbits can deviate significantly from the respective Kerr values. Study of the quasinormal modes of the static black holes gives strong evidence that they are mode stable against polar and axial perturbations. Future gravitational wave observations should improve the current bound on the Gauss-Bonnet coupling constant, based on observations of the low-mass x-ray binary A 0620-00.
- Jan 22 2016 gr-qc arXiv:1601.05583v1We construct sequences of rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory, employing two equations of state for the nuclear matter. We analyze the dependence of the physical properties of these neutron stars on the Gauss-Bonnet coupling strength. For a given equation of state we determine the physically relevant domain of rapidly rotating neutron stars, which is delimited by the set of neutron stars rotating at the Kepler limit, the set of neutron stars along the secular instability line, and the set of static neutron stars. As compared to Einstein gravity, the presence of the Gauss-Bonnet term decreases this domain, leading to lower values for the maximum mass as well as to smaller central densities. The quadrupole moment is decreased by the Gauss-Bonnet term for rapidly rotating neutron stars, while it is increased for slowly rotating neutron stars. The universal relation between the quadrupole moment and the moment of inertia found in General Relativity appears to extend to dilatonic Einstein-Gauss-Bonnet theory with very little dependence on the coupling strength of the Gauss-Bonnet term. The neutron stars carry a small dilaton charge.
- Nov 18 2015 gr-qc arXiv:1511.05513v1We present an investigation of spinning black holes in Einstein--Gauss-Bonnet--dilaton (EGBd) theory. The solutions are found within a non-perturbative approach, by directly solving the field equations. These stationary axially symmetric black holes are asymptotically flat. They possess a non-trivial scalar field outside their regular event horizon. We present an overview of the parameter space of the solutions together with a study of their basic properties. We point out that the EGBd black holes can exhibit some physical differences when compared to the Kerr solution. For example, their mass is always bounded from below, while their angular momentum can exceed the Kerr bound, Also, in contrast to the Kerr case, the extremal solutions are singular, with the scalar field diverging on the horizon.
- Nov 13 2015 gr-qc astro-ph.HE arXiv:1511.03960v2We investigate axial quasi-normal modes of realistic neutron stars in Einstein-Gauss-Bonnet-dilaton gravity. We consider 8 realistic equations of state containing nuclear, hyperonic, and hybrid matter. We focus on the fundamental curvature mode and compare the results with those of pure Einstein theory. We observe that the frequency of the modes is increased by the presence of the Gauss-Bonnet-dilaton, while the impact on the damping time is typically smaller. Interestingly, we obtain that universal relations valid in pure Einstein theory still hold for Einstein-Gauss-Bonnet-dilaton gravity, and we propose a method to use these phenomenological relations to constrain the value of the Gauss-Bonnet coupling.
- Jul 28 2014 gr-qc arXiv:1407.6884v1We consider rapidly rotating black holes and neutron stars in dilatonic Einstein-Gauss-Bonnet (EGBd) theory and determine their quadrupole moments, which receive a contribution from the dilaton. The quadrupole moment of EGBd black holes can be considerably larger than the Kerr value. For neutron stars, the universality property of the $\hat I$-$\hat Q$ relation between the scaled moment of inertia and the scaled quadrupole moment appears to extend to EGBd theory.
- Apr 18 2012 gr-qc arXiv:1204.3696v1The thermodynamics of the Kerr-AdS black hole is reformulated within the context of the formalism of geometrothermodynamics (GTD) and the cosmological constant is considered as a new thermodynamical parameter. We conclude that the mass of the black hole corresponds to the total enthalpy of this system. Choosing appropriately the metric in the equilibrium states manifold, we study the phase transitions as a divergence of the thermodynamical curvature scalar. This approach reproduces the Hawking-Page transition and shows that considering the cosmological constant as a thermodynamical parameter does not contribute with new phase transitions.
- The thermodynamics of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole from string theory is reformulated within the context of the recently developed formalism of geometrothermodynamics. The geometry of the space of equilibrium states is curved, but we show that the thermodynamic curvature does not diverge when the black hole solution becomes a naked singularity. This provides a counterexample to the conventional notion that a thermodynamical curvature divergence signals the occurrence of a phase transition.