results for au:Menon_A in:stat

- Nowozin \textitet al showed last year how to extend the GAN \textitprinciple to all $f$-divergences. The approach is elegant but falls short of a full description of the supervised game, and says little about the key player, the generator: for example, what does the generator actually converge to if solving the GAN game means convergence in some space of parameters? How does that provide hints on the generator's design and compare to the flourishing but almost exclusively experimental literature on the subject? In this paper, we unveil a broad class of distributions for which such convergence happens --- namely, deformed exponential families, a wide superset of exponential families --- and show tight connections with the three other key GAN parameters: loss, game and architecture. In particular, we show that current deep architectures are able to factorize a very large number of such densities using an especially compact design, hence displaying the power of deep architectures and their concinnity in the $f$-GAN game. This result holds given a sufficient condition on \textitactivation functions --- which turns out to be satisfied by popular choices. The key to our results is a variational generalization of an old theorem that relates the KL divergence between regular exponential families and divergences between their natural parameters. We complete this picture with additional results and experimental insights on how these results may be used to ground further improvements of GAN architectures, via (i) a principled design of the activation functions in the generator and (ii) an explicit integration of proper composite losses' link function in the discriminator.
- PCA is a classical statistical technique whose simplicity and maturity has seen it find widespread use as an anomaly detection technique. However, it is limited in this regard by being sensitive to gross perturbations of the input, and by seeking a linear subspace that captures normal behaviour. The first issue has been dealt with by robust PCA, a variant of PCA that explicitly allows for some data points to be arbitrarily corrupted, however, this does not resolve the second issue, and indeed introduces the new issue that one can no longer inductively find anomalies on a test set. This paper addresses both issues in a single model, the robust autoencoder. This method learns a nonlinear subspace that captures the majority of data points, while allowing for some data to have arbitrary corruption. The model is simple to train and leverages recent advances in the optimisation of deep neural networks. Experiments on a range of real-world datasets highlight the model's effectiveness.
- We present a theoretically grounded approach to train deep neural networks, including recurrent networks, subject to class-dependent label noise. We propose two procedures for loss correction that are agnostic to both application domain and network architecture. They simply amount to at most a matrix inversion and multiplication, provided that we know the probability of each class being corrupted into another. We further show how one can estimate these probabilities, adapting a recent technique for noise estimation to the multi-class setting, and thus providing an end-to-end framework. Extensive experiments on MNIST, IMDB, CIFAR-10, CIFAR-100 and a large scale dataset of clothing images employing a diversity of architectures --- stacking dense, convolutional, pooling, dropout, batch normalization, word embedding, LSTM and residual layers --- demonstrate the noise robustness of our proposals. Incidentally, we also prove that, when ReLU is the only non-linearity, the loss curvature is immune to class-dependent label noise.
- Bregman divergences play a central role in the design and analysis of a range of machine learning algorithms. This paper explores the use of Bregman divergences to establish reductions between such algorithms and their analyses. We present a new scaled isodistortion theorem involving Bregman divergences (scaled Bregman theorem for short) which shows that certain "Bregman distortions'" (employing a potentially non-convex generator) may be exactly re-written as a scaled Bregman divergence computed over transformed data. Admissible distortions include geodesic distances on curved manifolds and projections or gauge-normalisation, while admissible data include scalars, vectors and matrices. Our theorem allows one to leverage to the wealth and convenience of Bregman divergences when analysing algorithms relying on the aforementioned Bregman distortions. We illustrate this with three novel applications of our theorem: a reduction from multi-class density ratio to class-probability estimation, a new adaptive projection free yet norm-enforcing dual norm mirror descent algorithm, and a reduction from clustering on flat manifolds to clustering on curved manifolds. Experiments on each of these domains validate the analyses and suggest that the scaled Bregman theorem might be a worthy addition to the popular handful of Bregman divergence properties that have been pervasive in machine learning.
- Many classification algorithms produce a classifier that is a weighted average of kernel evaluations. When working with a high or infinite dimensional kernel, it is imperative for speed of evaluation and storage issues that as few training samples as possible are used in the kernel expansion. Popular existing approaches focus on altering standard learning algorithms, such as the Support Vector Machine, to induce sparsity, as well as post-hoc procedures for sparse approximations. Here we adopt the latter approach. We begin with a very simple classifier, given by the kernel mean $$ f(x) = \frac1n ∑\limits_i=i^n y_i K(x_i,x) $$ We then find a sparse approximation to this kernel mean via herding. The result is an accurate, easily parallelized algorithm for learning classifiers.
- In many real-world applications of machine learning classifiers, it is essential to predict the probability of an example belonging to a particular class. This paper proposes a simple technique for predicting probabilities based on optimizing a ranking loss, followed by isotonic regression. This semi-parametric technique offers both good ranking and regression performance, and models a richer set of probability distributions than statistical workhorses such as logistic regression. We provide experimental results that show the effectiveness of this technique on real-world applications of probability prediction.