results for au:Mathey_L in:cond-mat

- Aug 28 2017 cond-mat.quant-gas arXiv:1708.07550v2We study the critical behavior of Bose-Einstein condensation in the second band of a bipartite optical square lattice in a renormalization group framework at one-loop order. Within our field theoretical representation of the system, we approximate the system as a two-component Bose gas in three dimensions. We demonstrate that the system is in a different universality class than the previously studied condensation in a frustrated triangular lattice due to an additional Umklapp scattering term, which stabilizes the chiral superfluid order at low temperatures. We derive the renormalization group flow of the system and show that this order persists in the low energy limit. Furthermore, the renormalization flow suggests that the phase transition from the thermal phase to the chiral superfluid state is first order.
- Jun 15 2017 cond-mat.supr-con arXiv:1706.04554v3Recent pump-probe experiments reported an enhancement of superconducting transport along the $c$-axis of underdoped YBa$_2$Cu$_3$O$_{6+\delta}$ (YBCO), induced by a mid-infrared optical pump pulse tuned to a specific lattice vibration. To understand this transient non-equilibrium state, we develop a pump-probe formalism for a stack of Josephson junctions, and we consider the tunneling strengths in presence of modulation with an ultrashort optical pulse. We demonstrate that a transient enhancement of the Josephson coupling can be obtained for pulsed excitation and that this can be even larger than in a continuously driven steady-state. Especially interesting is the conclusion that the effect is largest when the material is parametrically driven at a frequency immediately above the plasma frequency, in agreement with what is found experimentally. For bilayer Josephson junctions, an enhancement similar to that experimentally is predicted below the critical temperature $T_c$. This model reproduces the essential features of the enhancement measured below $T_c$. To reproduce the experimental results above $T_c$, we will explore extensions of this model, such as in-plane and amplitude fluctuations, elsewhere.
- May 18 2017 cond-mat.supr-con cond-mat.str-el arXiv:1705.06112v2Unconventional superconductivity in the cuprates emerges from, or coexists with, other types of electronic order. However, these orders are sometimes invisible because of their symmetry. For example, the possible existence of superfluid charge stripes in the normal state of single layer cuprates cannot be validated with infrared optics, because interlayer tunneling fluctuations vanish on average. Similarly, it is not easy to establish if charge orders are responsible for dynamical decoupling of the superconducting layers over broad ranges of doping and temperatures. Here, we show that TeraHertz pulses can excite nonlinear tunneling currents between linearly de-coupled charge-ordered planes. A giant TeraHertz third harmonic signal is observed in La1.885Ba0.115CuO4 far above Tc=13 K and up to the charge ordering temperature TCO = 55 K. We model these results by considering large order-parameter-phase oscillations in a pair density wave condensate, and show how nonlinear mixing of optically silent tunneling modes can drive large dipole-carrying super-current oscillations. Our results provide compelling experimental support for the presence of hidden superfluid order in the normal state of cuprates. These experiments also underscore the power of nonlinear TeraHertz optics as a sensitive probe of frustrated excitations in quantum solids.
- Mar 09 2017 quant-ph cond-mat.quant-gas arXiv:1703.02863v1Supersymmetric systems derive their properties from conserved supercharges which form a supersymmetric algebra. These systems naturally factorize into two subsystems, which, when considered as individual systems, have essentially the same eigenenergies, and their eigenstates can be mapped onto each other. We first propose a one-dimensional ultracold atom setup to realize such a pair of supersymmetric systems. We propose a Mach-Zehnder interference experiment which we demonstrate for this system, and which can be realized with current technology. In this interferometer, a single atom wave packet that evolves in a superposition of the subsystems, gives an interference contrast that is sharply peaked if the subsystems form a supersymmetric pair. Secondly, we propose a two-dimensional setup that implements supersymmetric dynamics in a synthetic gauge field.
- Topological defects in Bloch bands, such as Dirac points in graphene, and their resulting Berry phases play an important role for the electronic dynamics in solid state crystals. Such defects can arise in systems with a two-atomic basis due to the momentum-dependent coupling of the two sublattice states, which gives rise to a pseudo-spin texture. The topological defects appear as vortices in the azimuthal phase of this pseudo-spin texture. Here, we demonstrate a complete measurement of the azimuthal phase in a hexagonal optical lattice employing a versatile method based on time-of-flight imaging after off-resonant lattice modulation. Furthermore we map out the merging transition of the two Dirac points induced by beam imbalance. Our work paves the way to accessing geometric properties in optical lattices also with spin-orbit coupling and interactions.
- Mar 07 2017 cond-mat.quant-gas quant-ph arXiv:1703.02024v1We investigate the superfluid behavior of a two-dimensional (2D) Bose gas of $^{87}$Rb atoms using classical field dynamics. In the experiment by R. Desbuquois \textitet al., Nat. Phys. \textbf8, 645 (2012), a 2D quasicondensate in a trap is stirred by a blue-detuned laser beam along a circular path around the trap center. Here, we study this experiment from a theoretical perspective. The heating induced by stirring increases rapidly above a velocity $v_c$, which we define as the critical velocity. We identify the superfluid, the crossover, and the thermal regime by a finite, a sharply decreasing, and a vanishing critical velocity, respectively. We demonstrate that the onset of heating occurs due to the creation of vortex-antivortex pairs. A direct comparison of our numerical results to the experimental ones shows good agreement, if a systematic shift of the critical phase-space density is included. We relate this shift to the absence of thermal equilibrium between the condensate and the thermal wings, which were used in the experiment to extract the temperature. We expand on this observation by studying the full relaxation dynamics between the condensate and the thermal cloud.
- Jan 13 2017 cond-mat.quant-gas arXiv:1701.03273v2We investigate the quantum phases of mixed-dimensional cold atom mixtures. In particular, we consider a mixture of a Fermi gas in a two-dimensional lattice, interacting with a bulk Fermi gas or a Bose-Einstein condensate in a three-dimensional lattice. The effective interaction of the two-dimensional system mediated by the bulk system is determined. We perform a functional renormalization group analysis, and demonstrate that by tuning the properties of the bulk system, a subtle competition of several superconducting orders can be controlled among $s$-wave, $p$-wave, $d_{x^2-y^2}$-wave, and $g_{xy(x^2-y^2)}$-wave pairing symmetries. Other instabilities such as a charge-density wave order are also demonstrated to occur. In particular, we find that the critical temperature of the $d$-wave pairing induced by the next-nearest-neighbor interactions can be an order of magnitude larger than that of the same pairing induced by doping in the simple Hubbard model. We expect that by combining the nearest-neighbor interaction with the next-nearest-neighbor hopping (known to enhance $d$-wave pairing), an even higher critical temperature may be achieved.
- Oct 28 2016 cond-mat.quant-gas cond-mat.supr-con arXiv:1610.08959v1We briefly summarize the current status of driven solid-state and cold-atom systems, and introduce articles compiled in the Focus Section in Zeitschrift für Naturforschung A, Volume 71, Issue 10 (2016)
- Phase transitions are a fundamental concept in science describing diverse phenomena ranging from, e.g., the freezing of water to Bose-Einstein condensation. While the concept is well-established in equilibrium, similarly fundamental concepts for systems far from equilibrium are just being explored, such as the recently introduced dynamical phase transition (DPT). Here we report on the first observation of a DPT in the dynamics of a fermionic many-body state after a quench between two lattice Hamiltonians. With time-resolved state tomography in a system of ultracold atoms in optical lattices, we obtain full access to the evolution of the wave function. We observe the appearance, movement, and annihilation of vortices in reciprocal space. We identify their number as a dynamical topological order parameter, which suddenly changes its value at the critical times of the DPT. Our observation of a DPT is an important step towards a more comprehensive understanding of non-equilibrium dynamics in general.
- Aug 19 2016 cond-mat.mes-hall arXiv:1608.05399v2We generalize the hierarchical equations of motion method to study electron transport through a quantum dot or molecule coupled to one-dimensional interacting leads that can be described as Luttinger liquids. Such leads can be realized, for example, by quantum wires or fractional quantum Hall edge states. In comparison to noninteracting metallic leads, Luttinger liquid leads involve many-body correlations and the single-particle tunneling density of states shows a power-law singularity at the chemical potential. Using the generalized hierarchical equations of motion method, we assess the importance of the singularity and the next-to-leading order many-body correlations. To this end, we compare numerically converged results with second and first-order results of the hybridization expansion that is inherent to our method. As a test case, we study transport through a single-level quantum dot or molecule that can be described by an Anderson impurity model. Cotunneling effects turn out to be most pronounced for attractive interactions in the leads or repulsive ones if an excitonic coupling between the dot and the leads is realized. We also find that an interaction-induced negative differential conductance near the Coulomb blockade thresholds is slightly suppressed as compared to a first-order and/or rate equation result. Moreover, we find that the two-particle ($n$-particle) correlations enter as a second-order ($n$-order) effect and are, thus, not very pronounced at the high temperatures and parameters that we consider.
- Jul 01 2016 cond-mat.supr-con arXiv:1606.09276v2Motivated by recent pump-probe experiments indicating enhanced coherent $c$-axis transport in underdoped YBCO, we study Josephson junctions periodically driven by optical pulses. We propose a mechanism for this observation by demonstrating that a parametrically driven Josephson junction shows an enhanced imaginary part of the low-frequency conductivity when the driving frequency is above the plasma frequency, implying an effectively enhanced Josephson coupling. We generalize this analysis to a bilayer system of Josephson junctions modeling YBCO. Again, the Josephson coupling is enhanced when the pump frequency is blue-detuned to either of the two plasma frequencies of the material. We show that the emergent driven state is a genuine, non-equilibrium superconducting state, in which equilibrium relations between the Josephson coupling, current fluctuations, and the critical current no longer hold.
- Apr 05 2016 cond-mat.supr-con cond-mat.stat-mech arXiv:1604.01010v2We develop a Magnus formalism for periodically driven systems which provides an expansion both in the driving term and the inverse driving frequency, applicable to isolated and dissipative systems. We derive explicit formulas for a driving term with a cosine dependence on time, up to fourth order. We apply these to the steady state of a classical parametric oscillator coupled to a thermal bath, which we solve numerically for comparison. Beyond dynamical stabilization at second order, we find that the higher orders further renormalize the oscillator frequency, and additionally create a weakly renormalized effective temperature. The renormalized oscillator frequency is quantitatively accurate almost up to the parametric instability, as we confirm numerically. Additionally, a cut-off dependent term is generated, which indicates the break-down of the hierarchy of time scales of the system, as a precursor to the instability. Finally, we apply this formalism to a parametrically driven chain, as an example for the control of the dispersion of a many-body system.
- We determine the exact dynamics of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a deep hexagonal optical lattice. The dynamical evolution is triggered by a quench of the lattice potential, such that the interaction strength $U_f$ is much larger than the hopping amplitude $J_f$. The quench initiates collective oscillations with frequency $|U_f|/(2\pi)$ in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the BCS order parameter $\Delta$. The oscillation frequency of $\Delta$ is not reproduced by treating the time evolution in mean-field theory. In our theory, the momentum noise (i.e. density-density) correlation functions oscillate at frequency $|U_f|/2\pi$ as well as at its second harmonic. For a very deep lattice, with zero tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. The damping occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. Furthermore, damping is stronger for larger order parameter and may therefore be used as a signature of the BCS state. Finally, our theory shows that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point.
- Jan 22 2016 cond-mat.quant-gas arXiv:1601.05431v2We demonstrate how a toroidal Bose-Einstein condensate with a movable barrier can be used to realize an atomtronic SQUID. The magnitude of the barrier height, which creates the analogue of an SNS junction, is of crucial importance, as well as its ramp-up and -down protocol. For too low of a barrier, the relaxation of the system is dynamically suppressed, due to the small rate of phase slips at the barrier. For a higher barrier, the phase coherence across the barrier is suppressed due to thermal fluctuations, which are included in our Truncated Wigner approach. Furthermore, we show that the ramp-up protocol of the barrier can be improved by ramping up its height first, and its velocity after that. This protocol can be further improved by optimizing the ramp-up and ramp-down time scales, which is of direct practical relevance for on-going experimental realizations.
- Oct 02 2015 cond-mat.quant-gas quant-ph arXiv:1510.00380v2The recent experimental condensation of ultracold atoms in a triangular optical lattice with negative effective tunneling energies paves the way to study frustrated systems in a controlled environment. Here, we explore the critical behavior of the chiral phase transition in such a frustrated lattice in three dimensions. We represent the low-energy action of the lattice system as a two-component Bose gas corresponding to the two minima of the dispersion. The contact repulsion between the bosons separates into intra- and inter-component interactions, referred to as $V_{0}$ and $V_{12}$, respectively. We first employ a Huang-Yang-Luttinger approximation of the free energy. For $V_{12}/V_{0} = 2$, which corresponds to the bare interaction, this approach suggests a first order phase transition, at which both the U$(1)$ symmetry of condensation and the $\mathbb{Z}_2$ symmetry of the emergent chiral order are broken simultaneously. Furthermore, we perform a renormalization group calculation at one-loop order. We demonstrate that the coupling regime $0<V_{12}/V_0\leq1$ shares the critical behavior of the Heisenberg fixed point at $V_{12}/V_{0}=1$. For $V_{12}/V_0>1$ we show that $V_{0}$ flows to a negative value, while $V_{12}$ increases and remains positive. This results in a breakdown of the effective quartic field theory due to a cubic anisotropy, and again suggests a discontinuous phase transition.
- Sep 09 2015 cond-mat.quant-gas quant-ph arXiv:1509.02168v2We investigate the superfluid behavior of a Bose-Einstein condensate of $^6$Li molecules. In the experiment by Weimer et al., Phys. Rev. Lett. 114, 095301 (2015) a condensate is stirred by a weak, red-detuned laser beam along a circular path around the trap center. The rate of induced heating increases steeply above a velocity $v_c$, which we define as the critical velocity. Below this velocity, the moving beam creates almost no heating. In this paper, we demonstrate a quantitative understanding of the critical velocity. Using both numerical and analytical methods, we identify the non-zero temperature, the circular motion of the stirrer, and the density profile of the cloud as key factors influencing the magnitude of $v_c$. A direct comparison to the experimental data shows excellent agreement.
- Dec 31 2014 cond-mat.quant-gas quant-ph arXiv:1412.8472v1We investigate the occurrence of rotons in a quadrupolar Bose-Einstein condensate confined to two dimensions. Depending on the particle density, the ratio of the contact and quadrupole-quadrupole interactions, and the alignment of the quadrupole moments with respect to the confinement plane, the dispersion relation features two or four point-like roton minima, or one ring-shaped minimum. We map out the entire parameter space of the roton behavior and identify the instability regions. We propose to observe the exotic rotons by monitoring the characteristic density wave dynamics resulting from a short local perturbation, and discuss the possibilities to detect the predicted effects in state-of-the-art experiments with ultracold homonuclear molecules.
- Dec 31 2014 cond-mat.quant-gas physics.atom-ph arXiv:1412.8473v1We optimize a collision-induced cooling process for ultracold atoms in the nondegenerate regime. It makes use of a Feshbach resonance, instead of rf radiation in evaporative cooling, to selectively expel hot atoms from a trap. Using functional minimization we analytically show that for the optimal cooling process the resonance energy must be tuned such that it linearly follows the temperature. Here, optimal cooling is defined as maximizing the phase-space density after a fixed cooling duration. The analytical results are confirmed by numerical Monte-Carlo simulations. In order to simulate more realistic experimental conditions, we show that background losses do not change our conclusions, while additional non-resonant two-body losses make a lower initial resonance energy with non-linear dependence on temperature preferable.
- Nov 14 2014 cond-mat.quant-gas arXiv:1411.3483v2The breaking of time reversal symmetry via the spontaneous formation of chiral order is ubiquitous in nature. Here, we present an unambiguous demonstration of this phenomenon for atoms Bose-Einstein condensed in the second Bloch band of an optical lattice. As a key tool we use a matter wave interference technique, which lets us directly observe the phase properties of the superfluid order parameter and allows us to reconstruct the spatial geometry of certain low energy excitations, associated with the formation of domains of different chirality. Our work marks a new era of optical lattices where orbital degrees of freedom play an essential role for the formation of exotic quantum matter, similarly as in electronic systems.
- Sep 09 2014 cond-mat.quant-gas arXiv:1409.1945v3The Dicke model with a weak dissipation channel is realized by coupling a Bose-Einstein condensate to an optical cavity with ultra-narrow bandwidth. We explore the dynamical critical properties of the Hepp-Lieb-Dicke phase transition by performing quenches across the phase boundary. We observe hysteresis in the transition between a homogeneous phase and a self-organized collective phase with an enclosed loop area showing power law scaling with respect to the quench time, which suggests an interpretation within a general framework introduced by Kibble and Zurek. The observed hysteretic dynamics is well reproduced by numerically solving the mean field equation derived from a generalized Dicke Hamiltonian. Our work promotes the understanding of nonequilibrium physics in open many-body systems with infinite range interactions.
- Aug 25 2014 cond-mat.quant-gas arXiv:1408.5239v1We map out the critical velocity in the crossover from Bose-Einstein condensation (BEC) to Bardeen-Cooper-Schrieffer superfluidity with ultracold $^{6}$Li gases. A small attractive potential is dragged along lines of constant column density. The rate of the induced heating increases steeply above a critical velocity $v_c$. In the same samples, we measure the speed of sound $v_s$ by exciting density waves and compare the results to the measured values of $v_c$. We perform numerical simulations in the BEC regime and find very good agreement, validating the approach. In the strongly correlated regime, where theoretical predictions only exist for the speed of sound, our measurements of $v_c$ provide a testing ground for theoretical approaches.
- Jun 16 2014 cond-mat.supr-con quant-ph arXiv:1406.3609v2We study the thermally fluctuating state of a bi-layer cuprate superconductor under the periodic action of a staggered field oscillating at optical frequencies. This analysis distills essential elements of the recently discovered phenomenon of light enhanced coherence in YBa$_2$Cu$_3$O$_{6+x}$, which was achieved by periodically driving infrared active apical oxygen distortions. The effect of a staggered periodic perturbation is studied using a Langevin and Fokker-Planck description of driven, coupled Josephson junctions, which represent two neighboring pairs of layers and their two plasmons. In a toy model including only two junctions, we demonstrate that the external driving leads to a suppression of phase fluctuations of the low-energy plasmon, an effect which is amplified via the resonance of the high energy plasmon. When extending the modeling to the full layers, we find that this reduction becomes far more pronounced, with a striking suppression of the low-energy fluctuations, as visible in the power spectrum. We also find that this effect acts onto the in-plane fluctuations, which are reduced on long length scales. All these findings provide a physical framework to describe light control in cuprates.
- Mar 18 2014 cond-mat.quant-gas arXiv:1403.4233v1We analyze density-density correlations of expanding clouds of weakly interacting two-dimensional Bose gases below and above the Berezinskii-Kosterlitz-Thouless transition, with particular focus on short-time expansions. During time-of-flight expansion, phase fluctuations of the trapped system translate into density fluctuations, in addition to the density fluctuations that exist in in-situ. We calculate the correlations of these fluctuations both in real space and in momentum space, and derive analytic expressions in momentum space. Below the transition, the correlation functions show an oscillatory behavior, controlled by the scaling exponent of the quasi-condensed phase, due to constructive interference. We argue that this can be used to extract the scaling exponent of the quasi-condensate experimentally. Above the transition, the interference is rapidly suppressed when the atoms travel an average distance beyond the correlation length. This can be used to distinguish the two phases qualitatively.
- Feb 06 2014 cond-mat.quant-gas quant-ph arXiv:1402.0873v1We propose to detect quadrupole interactions of neutral ultra-cold atoms via their induced mean-field shift. We consider a Mott insulator state of spin-polarized atoms in a two-dimensional optical square lattice. The quadrupole moments of the atoms are aligned by an external magnetic field. As the alignment angle is varied, the mean-field shift shows a characteristic angular dependence, which constitutes the defining signature of the quadrupole interaction. For the $^{3}P_{2}$ states of Yb and Sr atoms, we find a frequency shift of the order of tens of Hertz, which can be realistically detected in experiment with current technology. We compare our results to the mean-field shift of a spin-polarized quasi-2D Fermi gas in continuum.
- Nov 11 2013 cond-mat.quant-gas arXiv:1311.1947v2Following the recent proposal to create quadrupolar gases [S.G. Bhongale et al., Phys. Rev. Lett. 110, 155301 (2013)], we investigate what quantum phases can be created in these systems in one dimension. We consider a geometry of two coupled one-dimensional systems, and derive the quantum phase diagram of ultra-cold fermionic atoms interacting via quadrupole-quadrupole interaction within a Tomonaga-Luttinger-liquid framework. We map out the phase diagram as a function of the distance between the two tubes and the angle between the direction of the tubes and the quadrupolar moments. The latter can be controlled by an external field. We show that there are two magic angles $\theta^{c}_{B,1}$ and $\theta^{c}_{B,2}$ between $0$ to $\pi/2$, where the intratube quadrupolar interactions vanish and change signs. Adopting a pseudo-spin language with regards to the two 1D systems, the system undergoes a spin-gap transition and displays a zig-zag density pattern, above $\theta^{c}_{B,2}$ and below $\theta^{c}_{B,1}$. Between the two magic angles, we show that polarized triplet superfluidity and a planar spin-density wave order compete with each other. The latter corresponds to a bond order solid in higher dimensions. We demonstrate that this order can be further stabilized by applying a commensurate periodic potential along the tubes.
- Aug 27 2013 cond-mat.quant-gas quant-ph arXiv:1308.5680v2We propose a method to reach the antiferromagnetic state of two-dimensional Fermi gases trapped in optical lattices: Independent subsystems are prepared in suitable initial states and then connected by a sudden or slow quench of the tunneling between the subsystems. Examples of suitable low-entropy subsystems are double wells or plaquettes, which can be experimentally realised in Mott insulating shells using optical super-lattices. We estimate the effective temperature T* of the system after the quench by calculating the distribution of excitations created using the spin wave approximation in a Heisenberg model. We investigate the effect of an initial staggered magnetic field and find that for an optimal polarisation of the initial state the effective temperature can be significantly reduced from T*$\approx$1.7 Tc at zero polarisation to T*<0.65Tc, where Tc is the crossover temperature to the antiferromagnetic state. The temperature can be further reduced using a finite quench time. We also show that T* decreases logarithmically with the linear size of the subsystem.
- Apr 22 2013 cond-mat.quant-gas arXiv:1304.5520v2Emulation of gauge fields for ultracold atoms provides access to a class of exotic states arising in strong magnetic fields. Here we report on the experimental realisation of tunable staggered gauge fields in a periodically driven triangular lattice. For maximal staggered magnetic fluxes, the doubly degenerate superfluid ground state breaks both a discrete Z2 (Ising) symmetry and a continuous U(1) symmetry. By measuring an Ising order parameter, we observe a thermally driven phase transition from an ordered antiferromagnetic to an unordered paramagnetic state and textbook-like magnetisation curves. Both the experimental and theoretical analysis of the coherence properties of the ultracold gas demonstrate the strong influence of the Z2 symmetry onto the condensed phase.
- We introduce a new platform for quantum simulation of many-body systems based on nonspherical atoms or molecules with zero dipole moment but possessing a significant value of electric quadrupole moment. We consider a quadrupolar Fermi gas trapped in a 2D square optical lattice, and show that the peculiar symmetry and broad tunability of the quadrupole-quadrupole interaction results in a rich phase diagram encompassing unconventional BCS and charge density wave phases, and opens up a perspective to create topological superfluid. Quadrupolar species, such as metastable alkaline-earth atoms and homonuclear molecules, are stable against chemical reactions and collapse and are readily available in experiment at high densities.
- Sep 13 2012 cond-mat.quant-gas cond-mat.supr-con arXiv:1209.2671v2The conventional spin density wave (SDW) phase (Overhauser, 1962), as found in antiferromagnetic metal for example (Fawcett 1988), can be described as a condensate of particle-hole pairs with zero angular momentum, $\ell=0$, analogous to a condensate of particle-particle pairs in conventional superconductors. While many unconventional superconductors with Cooper pairs of finite $\ell$ have been discovered, their counterparts, density waves with non-zero angular momenta, have only been hypothesized in two-dimensional electron systems (Nayak, 2000). Using an unbiased functional renormalization group analysis, we here show that spin-triplet particle-hole condensates with $\ell=1$ emerge generically in dipolar Fermi gases of atoms (Lu, Burdick, and Lev, 2012) or molecules (Ospelkaus et al., 2008; Wu et al.) on optical lattice. The order parameter of these exotic SDWs is a vector quantity in spin space, and, moreover, is defined on lattice bonds rather than on lattice sites. We determine the rich quantum phase diagram of dipolar fermions at half-filling as a function of the dipolar orientation, and discuss how these SDWs arise amidst competition with superfluid and charge density wave phases.
- Aug 21 2012 cond-mat.quant-gas arXiv:1208.4020v2We report on the experimental observation of an analog to a persistent alternating photocurrent in an ultracold gas of fermionic atoms in an optical lattice. The dynamics is induced and sustained by an external harmonic confinement. While particles in the excited band exhibit long-lived oscillations with a momentum dependent frequency a strikingly different behavior is observed for holes in the lowest band. An initial fast collapse is followed by subsequent periodic revivals. Both observations are fully explained by mapping the system onto a nonlinear pendulum.
- Jul 03 2012 cond-mat.quant-gas quant-ph arXiv:1207.0501v3Using a numerical implementation of the truncated Wigner approximation, we simulate the experiment reported by Ramanathan et al. in Phys. Rev. Lett. 106, 130401 (2011), in which a Bose-Einstein condensate is created in a toroidal trap and set into rotation via a phase imprinting technique. A potential barrier is then placed in the trap to study the decay of the superflow. We find that the current decays via thermally activated phase slips, which can also be visualized as vortices crossing the barrier region in the radial direction. Adopting the notion of critical velocity used in the experiment, we determine it to be lower than the local speed of sound at the barrier, in contradiction to the predictions of the zero-temperature Gross-Pitaevskii equation. We map out the superfluid decay rate and critical velocity as a function of temperature and observe a strong dependence. Thermal fluctuations offer a partial explanation of the experimentally observed reduction of the critical velocity from the phonon velocity.
- Apr 19 2012 cond-mat.quant-gas arXiv:1204.3988v2We study the quantum phases of one-dimensional Bose-Fermi mixtures in optical lattices. Assuming repulsive interparticle interactions, equal mass, and unit total filling, we calculate the ground-state phase diagram by means of both Tomonaga-Luttinger liquid theory and time-evolving block decimation method. We demonstrate the existence of a counterflow superfluid (CFSF) phase of polaron pairs, which are composite particles consisting of two fermions and two bosonic holes, in a broad range of the parameter space. We find that this phase naturally emerges in $^{174}$Yb-$^{173}$Yb mixtures, realized in recent experiments, at low temperatures.
- Dec 07 2011 cond-mat.quant-gas quant-ph arXiv:1112.1204v1We propose a realistic experiment to demonstrate a dynamic Kosterlitz-Thouless transition in ultra-cold atomic gases in two dimensions. With a numerical implementation of the Truncated Wigner Approximation we simulate the time evolution of several correlation functions, which can be measured via matter wave interference. We demonstrate that the relaxational dynamics is well-described by a real-time renormalization group approach, and argue that these experiments can guide the development of a theoretical framework for the understanding of critical dynamics.
- Nov 15 2011 cond-mat.quant-gas quant-ph arXiv:1111.2873v3Recent experimental realization of dipolar Fermi gases near or below quantum degeneracy provides opportunity to engineer Hubbard-like models with long range interactions. Motivated by these experiments, we chart out the theoretical phase diagram of interacting dipolar fermions on the square lattice at zero temperature and half filling. We show that in addition to p-wave superfluid and charge density wave order, two new and exotic types of bond order emerge generically in dipolar fermion systems. These phases feature homogeneous density but periodic modulations of the kinetic hopping energy between nearest or next-nearest neighbors. Similar, but manifestly different, phases of two-dimensional correlated electrons have previously only been hypothesized and termed "density waves of nonzero angular momentum". Our results suggest that these phases can be constructed flexibly with dipolar fermions, using currently available experimental techniques.
- Mar 18 2011 cond-mat.quant-gas quant-ph arXiv:1103.3513v3We suggest an experimentally feasible procedure to observe paired and counterflow superfluidity in ultra-cold atom systems. We study the time evolution of one-dimensional mixtures of bosonic atoms in an optical lattice following an abrupt displacement of an additional weak confining potential. We find that the dynamic responses of the paired superfluid phase for attractive inter-species interactions and the counterflow superfluid phase for repulsive interactions are qualitatively distinct and reflect the quasi long-range order that characterizes these states. These findings suggest a clear experimental procedure to detect these phases, and give an intuitive insight into their dynamics.
- Jul 05 2010 cond-mat.quant-gas quant-ph arXiv:1007.0281v3We study the phase-fluctuating condensate regime of ultra-cold atoms trapped in a ring-shaped trap geometry, which has been realized in recent experiments. We first consider a simplified box geometry, in which we identify the conditions to create a state that is dominated by thermal phase-fluctuations, and then explore the experimental ring geometry. In both cases we demonstrate that the requirement for strong phase fluctuations can be expressed in terms of the total number of atoms and the geometric length scales of the trap only. For the ring-shaped trap we discuss the zero temperature limit in which a condensate is realized where the phase is fluctuating due to interactions and quantum fluctuations. We also address possible ways of detecting the phase fluctuating regime in ring condensates.
- Mar 01 2010 cond-mat.quant-gas arXiv:1002.4918v2We study the noise correlations of one-dimensional binary Bose mixtures, as a probe of their quantum phases. In previous work, we found a rich structure of many-body phases in such mixtures, such as paired and counterflow superfluidity. Here we investigate the signature of these phases in the noise correlations of the atomic cloud after time-of-flight expansion, using both Luttinger liquid theory and the time-evolving block decimation (TEBD) method. We find that paired and counterflow superfluidity exhibit distinctive features in the noise spectra. We treat both extended and inhomogeneous systems, and our numerical work shows that the essential physics of the extended systems is present in the trapped-atom systems of current experimental interest. For paired and counterflow superfluid phases, we suggest methods for extracting Luttinger parameters from noise correlation spectroscopy.
- Jan 01 2010 cond-mat.quant-gas quant-ph arXiv:1001.0098v1We study the dynamics of the relative phase of a bilayer of two-dimensional superfluids after the two superfluids have been decoupled. We find that on short time scales the relative phase shows "light cone" like dynamics and creates a metastable superfluid state, which can be supercritical. We also demonstrate similar light cone dynamics for the transverse field Ising model. On longer time scales the supercritical state relaxes to a disordered state due to dynamical vortex unbinding. This scenario of dynamically suppressed vortex proliferation constitutes a reverse-Kibble-Zurek effect. We study this effect both numerically using truncated Wigner approximation and analytically within a newly suggested time dependent renormalization group approach (RG). In particular, within RG we show that there are two possible fixed points for the real time evolution corresponding to the superfluid and normal steady states. So depending on the initial conditions and the microscopic parameters of the Hamiltonian the system undergoes a non-equilibrium phase transition of the Kosterlitz-Thouless type. The time scales for the vortex unbinding near the critical point are exponentially divergent, similar to the equilibrium case.
- Jun 12 2009 cond-mat.quant-gas arXiv:0906.2150v1We study the quantum phases of mixtures of ultra-cold bosonic atoms held in an optical lattice that confines motion or hopping to one spatial dimension. The phases are found by using Tomonaga-Luttinger liquid theory as well as the numerical method of time evolving block decimation (TEBD). We consider a binary mixture with repulsive intra-species interactions, and either repulsive or attractive inter-species interaction. For a homogeneous system, we find paired- and counterflow-superfluid phases at different filling and hopping energies. We also predict parameter regions in which these types of superfluid order coexist with charge density wave order. We show that the Tomonaga-Luttinger liquid theory and TEBD qualitatively agree on the location of the phase boundary to superfluidity. We then describe how these phases are modified and can be detected when an additional harmonic trap is present. In particular, we show how experimentally measurable quantities, such as time-of-flight images and the structure factor, can be used to distinguish the quantum phases. Finally, we suggest applying a Feshbach ramp to detect the paired superfluid state, and a $\pi/2$ pulse followed by Bragg spectroscopy to detect the counterflow superfluid phase.
- Apr 21 2009 cond-mat.quant-gas arXiv:0904.2881v2We study the dynamics of the relative phase of a bilayer of two-dimensional superfluids after the two superfluids have been decoupled, using truncated Wigner approximation. On short time scales the relative phase shows "light cone" like thermalization and creates a metastable superfluid state, which can be supercritical. On longer time scales this state relaxes to a disordered state due to dynamical vortex unbinding. This scenario of dynamically suppressed vortex proliferation constitutes a \it reverse-Kibble-Zurek effect. We observe dynamics of creation of vortex anti-vortex pairs and their consequent motion. Our predictions can be directly measured in interference experiments, see Ref 1.
- Apr 01 2009 cond-mat.quant-gas cond-mat.other arXiv:0903.5371v1Article to appear in the Encyclopedia of Complexity and Systems Science, Dr. R. A. Meyers (Ed.) (Springer Heidelberg, 2009).
- Mar 17 2009 cond-mat.other arXiv:0903.2568v1We propose a new type of cooling mechanism for ultra-cold fermionic atom ensembles, which capitalizes on the energy dependence of inelastic collisions in the presence of a Feshbach resonance. We first discuss the case of a single magnetic resonance, and find that the final temperature and the cooling rate is limited by the width of the resonance. A concrete example, based on a p-wave resonance of $^{40}$K, is given. We then improve upon this setup by using both a very sharp optical or radio-frequency induced resonance and a very broad magnetic resonance and show that one can improve upon temperatures reached with current technologies.
- Oct 10 2008 cond-mat.other arXiv:0810.1555v1We derive relations between standard order parameter correlations and the noise correlations in time of flight images, which are valid for systems with long range order as well as low dimensional systems with algebraic decay of correlations. Both Bosonic and Fermionic systems are considered. For one dimensional Fermi systems we show that the noise correlations are equally sensitive to spin, charge and pairing correlations and may be used to distinguish between fluctuations in the different channels. This is in contrast to linear response experiments, such as Bragg spectroscopy, which are only sensitive to fluctuations in the particle-hole channel (spin or charge). For Bosonic systems we find a sharp peak in the noise correlation at opposite momenta that signals pairing correlations in the depletion cloud. In a condensate with true long range order, this peak is a delta function and we can use Bogoliubov theory to study its temperature dependence. Interestingly we find that it is enhanced with temperature in the low temperature limit. In one dimensional condensates with only quasi-long range (i.e. power-law) order the peak in the noise correlations also broadens to a power-law singularity.
- Jun 04 2008 cond-mat.other arXiv:0806.0461v2We identify a one-dimensional supersolid phase in a binary mixture of near-hardcore bosons with weak, local inter-species repulsion. We find realistic conditions under which such a phase, defined here as the coexistence of quasi-superfluidity and quasi-charge density wave order, can be produced and observed in finite ultra-cold atom systems in a harmonic trap. Our analysis is based on Luttinger liquid theory supported with numerical calculations using the time-evolving block decimation method. Clear experimental signatures of these two orders can be found, respectively, in time-of-flight interference patterns, and the structure factor S(k) derived from density correlations.
- Dec 08 2006 cond-mat.other arXiv:cond-mat/0612174v4We study the phase-locking transition of two coupled low-dimensional superfluids, either two-dimensional superfluids at finite temperature, or one-dimensional superfluids at zero temperature. We find that the superfluids have a strong tendency to phase-lock. The phase-locking is accompanied by a sizeable increase of the transition temperature $T_{c}$ (in 2D systems) of the resulting double-layer superfluid to thermal Bose gas transition, compared to the Kosterlitz-Thouless temperature $T_{KT}$ of the uncoupled 2D systems, which suggests a plausible way of observing the Kibble-Zurek mechanism in two-dimensional cold atom systems by rapidly varying the tunneling rate between the superfluids. If there is also interaction between atoms in different layers present we find additional phases, while no sliding phase, characterized by order or quasi long range order (QLRO) either in the symmetric or the antisymmetric sector of the system.
- Sep 12 2006 cond-mat.supr-con arXiv:cond-mat/0609212v3We study the phase diagram of two-dimensional Bose-Fermi mixtures of ultracold atoms on a triangular optical lattice, in the limit when the velocity of bosonic condensate fluctuations is much larger than the Fermi velocity. We contrast this work with our previous results for a square lattice system in Phys. Rev. Lett. \bf 97, 030601 (2006). Using functional renormalization group techniques we show that the phase diagrams for a triangular lattice contain exotic superconducting phases. For spin-1/2 fermions on an isotropic lattice we find a competition of $s$-, $p$-, extended $d$-, and $f$-wave symmetry, as well as antiferromagnetic order. For an anisotropic lattice, we further find an extended p-wave phase. A Bose-Fermi mixture with spinless fermions on an isotropic lattice shows a competition between $p$- and $f$-wave symmetry. These phases can be traced back to the geometric shapes of the Fermi surfaces in various regimes, as well as the intrinsic frustration of a triangular lattice.
- Feb 28 2006 cond-mat.other arXiv:cond-mat/0602616v4We study binary mixtures of ultra-cold atoms, confined to one dimension in an optical lattice, with commensurate densities. Within a Luttinger liquid description, which treats various mixtures on equal footing, we derive a system of renormalization group equations at second order, from which we determine the rich phase diagrams of these mixtures. These phases include charge/spin density wave order, singlet and triplet pairing, polaron pairing, and a supersolid phase. Various methods to detect our results experimentally are discussed.
- Feb 21 2006 cond-mat.other arXiv:cond-mat/0602437v3We study the quantum phase diagrams of Bose-Fermi mixtures of ultracold atoms confined to one dimension in an optical lattice. For systems with incommensurate densities, various quantum phases, e.g. charge/spin density waves, pairing, phase separation, and the Wigner crystal, are found to be dominant in different parameter regimes within a bosonization approach. The structure of the phase diagram leads us to propose that the system is best understood as a Luttinger liquid of polarons (i.e. atoms of one species surrounded by screening clouds of the other species). Special fillings, half-filling for fermions and unit filling for bosons, and the resulting gapped phases are also discussed, as well as the properties of the polarons and the experimental realization of these phases.
- Feb 11 2006 cond-mat.other arXiv:cond-mat/0602245v2Using a functional renormalization group approach we study the zero temperature phase diagram of two-dimensional Bose-Fermi mixtures of ultra-cold atoms in optical lattices, in the limit when the velocity of bosonic condensate fluctuations are much larger than the Fermi velocity. For spin-1/2 fermions we obtain a phase diagram, which shows a competition of pairing phases of various orbital symmetry ($s$, $p$, and $d$) and antiferromagnetic order. We determine the value of the gaps of various phases close to half-filling, and identify subdominant orders as well as short-range fluctuations from the RG flow. For spinless fermions we find that p-wave pairing dominates the phase diagram.
- Jul 06 2005 cond-mat.str-el cond-mat.other arXiv:cond-mat/0507108v3Time of flight images reflect the momentum distribution of the atoms in the trap, but the spatial noise in the image holds information on more subtle correlations. Using Bosonization, we study such noise correlations in generic one dimensional systems of ultra cold fermions. Specifically, we show how pairing as well as spin and charge density wave correlations may be identified and extracted from the time of flight images. These incipient orders manifest themselves as power law singularities in the noise correlations, that depend on the Luttinger parameters, which suggests a general experimental technique to obtain them.
- Jan 26 2004 quant-ph cond-mat.str-el arXiv:quant-ph/0401151v1We use bosonization approach to investigate quantum phases in mixtures of bosonic and fermionic atoms confined in one dimensional optical lattices. The phase diagrams can be well understood in terms of polarons, which correspond to atoms that are "dressed" by screening clouds of the other atom species. For a mixture of single species of fermionic and bosonic atoms we find a charge density wave phase, a phase with fermion pairing, and a regime of phase separation. For a mixture of two species of fermionic atoms and one species of bosonic atoms we obtain spin and charge density wave phases, a Wigner crystal phase, singlet and triplet paired states of fermions, and a phase separation regime. Equivalence between the Luttinger liquid description of polarons and the canonical polaron transformation is established and the techniques to detect the resulting quantum phases are discussed.