results for au:Ma_X in:quant-ph

- May 16 2018 quant-ph arXiv:1805.05538v1Quantum key distribution allows remote parties to generate information-theoretic secure keys. The bottleneck throttling its real-life applications lies in the limited communication distance and key generation speed, due to the fact that the information carrier can be easily lost in the channel. For all the current implementations, the key rate is bounded by the channel transmission probability, $\eta$. Rather surprisingly, by matching the phases of two coherent states and encoding the key information into the common phase, this linear key-rate constraint can be overcome --- the secure key rate scales with the square root of the transmission probability, $O(\sqrt{\eta})$. To achieve this, we develop an optical-mode-based security proof that is different from the conventional qubit-based security proofs. Furthermore, the proposed scheme is measurement-device-independent, i.e., it is immune to all possible detection attacks. The simulation result shows that the key rate can even exceed the transmission probability $\eta$ between two communication parties. In addition, we apply phase post-compensation to devise a practical version of the scheme without phase-locking, which makes the proposed scheme feasible with the current technology. This means that quantum key distribution can enjoy both sides of the world --- practicality and security.
- May 14 2018 quant-ph arXiv:1805.04431v2A Bell test, which challenges the philosophical worldview of local realism against experimental observations, is a randomized trial requiring spatially-distributed entanglement, fast and high-efficiency detection, and unpredictable measurement settings. While technology can perfect the first two of these, and while technological randomness sources enable device-independent protocols based on Bell inequality violation, challenging local realism using physical randomizers inevitably makes assumptions about the same physics one aims to test. Bell himself noted this weakness of physical setting choices and argued that human free will could rigorously be used to assure unpredictability in Bell tests. Here we report a suite of local realism tests using human choices, avoiding assumptions about predictability in physics. We recruited ~100,000 human participants to play an online video game that incentivizes fast, sustained input of unpredictable bits while also illustrating Bell test methodology. The participants generated 97,347,490 binary choices, which were directed via a scalable web platform to twelve laboratories on five continents, in which 13 experiments tested local realism using photons, single atoms, atomic ensembles, and superconducting devices. Over a 12-hour period on the 30 Nov. 2016, participants worldwide provided a sustained flow of over 1000 bits/s to the experiments, which used different human-generated bits to choose each measurement setting. The observed correlations strongly contradict local realism and other realist positions in bi-partite and tri-partite scenarios. Project outcomes include closing of the freedom-of-choice loophole, gamification of statistical and quantum non-locality concepts, new methods for quantum-secured communications, a very large dataset of human-generated randomness, and networking techniques for global participation in experimental science.
- May 11 2018 quant-ph arXiv:1805.03753v1Projectors are a simple but powerful tool for manipulating and probing quantum systems. For instance, projecting two-qubit systems onto maximally entangled states can enable quantum teleportation. While such projectors have been extensively studied, partially-entangling measurements have been largely overlooked, especially experimentally, despite their important role in quantum foundations and quantum information. Here, we propose a way to project two polarized photons onto any state with a single experimental setup. Our scheme does not require optical non-linearities or additional photons. Instead, the entangling operation is provided by Hong-Ou-Mandel interference and post-selection. The efficiency of the scheme is between 50% and 100%, depending on the projector. We perform an experimental demonstration and reconstruct the operator describing our measurement using detector tomography. Finally, we flip the usual role of measurement and state in Hardy's test by performing a partially-entangling projector on separable states. The results verify the entangling nature of our measurement with six standard deviations of confidence.
- Dec 11 2017 quant-ph arXiv:1712.02887v1The Hanbury Brown Twiss (HBT) interferometer was proposed to observe intensity correlations of starlight to measure a star's angular diameter. As the intensity of light that reaches the detector from a star is very weak, one cannot usually get a workable signal-to-noise ratio. We propose an improved HBT interferometric scheme introducing optical parametric amplifiers into the system, to amplify the correlation signal, which is used to calculate the angular diameter. With the use of optical parametric amplifiers, the signal-to-noise ratio can be increased up to 400 percent.
- Nov 13 2017 quant-ph arXiv:1711.03635v1We theoretically study the phase sensitivity of an SU(1,1) interferometer with a thermal state and squeezed vacuum state as inputs and parity detection as measurement. We find that phase sensitivity can beat the shot-noise limit and approaches the Heisenberg limit with increasing input photon number.
- Nov 07 2017 quant-ph arXiv:1711.01784v1Creating large-scale entanglement lies at the heart of many quantum information processing protocols and the investigation of fundamental physics. Due to unavoidable interactions with the environment and current technological limitations, the generated many-body quantum state may not contain genuine multipartite entanglement but rather only a mixture of fewer-body entanglements. Still, identifying the precise structure of such many-body, but lower-order entanglement is of paramount importance. On the one hand, it provides hints on the whereabouts of imperfection in the setup, whereas on the other, it allows one to benchmark our technological progress towards the ultimate goal of demonstrating quantum supremacy. Here, we propose two complementary families of witnesses for the identification of such structures, each applicable to an arbitrary number of subsystems and whose evaluation requires only the implementation of solely two local measurements. As a proof of principle, we experimentally generate-via a reconfigurable photonic interferometer-five different eight-photon entangled states and demonstrate how their entanglement structure can be precisely and systematically inferred from the experimental measurement of these witnesses.
- Sep 21 2017 quant-ph arXiv:1709.06779v1Quantum mechanics provides means of generating genuine randomness that is impossible with deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a self-testing manner that is independent of implementation devices. Here, we present an experimental demonstration of self-testing quantum random number generation based on an detection-loophole free Bell test with entangled photons. In the randomness analysis, without the assumption of independent identical distribution, we consider the worst case scenario that the adversary launches the most powerful attacks against quantum adversary. After considering statistical fluctuations and applying an 80 Gb $\times$ 45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits/s, with a failure probability less than $10^{-5}$. Such self-testing random number generators mark a critical step towards realistic applications in cryptography and fundamental physics tests.
- Aug 01 2017 quant-ph arXiv:1707.09928v1Coherence and entanglement are fundamental properties of quantum systems, promising to power the near future quantum computers, sensors and simulators. Yet, their experimental detection is challenging, usually requiring full reconstruction of the system state. We show that one can extract quantitative bounds to the relative entropy of coherence and the coherent information, coherence and entanglement quantifiers respectively, by a limited number of purity measurements. The scheme is readily implementable with current technology to verify quantum computations in large scale registers, without carrying out expensive state tomography.
- Jul 11 2017 quant-ph arXiv:1707.02522v1Manipulation and quantification of quantum resources are fundamental problems in quantum physics. In the asymptotic limit, coherence distillation and dilution have been proposed by manipulating infinite identical copies of states. In the non-asymptotic setting, finite data-size effects emerge, and the practically relevant problem of coherence manipulation using finite resources has been left open. This letter establishes the one-shot theory of coherence dilution, which involves converting maximally coherent states into an arbitrary quantum state using maximally incoherent operations, dephasing-covariant incoherent operations, incoherent operations, or strictly incoherent operations. We introduce several coherence monotones with concrete operational interpretations that estimate the one-shot coherence cost --- the minimum amount of maximally coherent states needed for faithful coherence dilution. Furthermore, we derive the asymptotic coherence dilution results with maximally incoherent operations, incoherent operations, and strictly incoherent operations as special cases. Our result can be applied in the analyses of quantum information processing tasks that exploit coherence as resources, such as quantum key distribution and random number generation.
- Jul 04 2017 quant-ph arXiv:1707.00400v1To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized by servers who are denied information about the computation itself. This concealment is accompanied by a verification protocol that tests servers' honesty and correctness. Our demonstration shows the feasibility of completely classical clients and thus is a key milestone towards secure cloud quantum computing.
- Jun 16 2017 quant-ph arXiv:1706.04853v1From an operational perspective, quantumness characterizes the exotic behavior in a physical process which cannot be explained with Newtonian physics. There are several widely used measures of quantumness, including coherence, discord, and entanglement, each proven to be essential resources in particular situations. There exists evidence of fundamental connections amongst the three measures. However, those quantumnesses are still regarded differently and such connections are yet to be elucidated. Here, we introduce a general framework of defining a unified quantumness with an operational motivation founded on the capability of interferometry. The quantumness appears differently as coherence, discord, and entanglement in different scenarios with local measurement, weak reference frame free measurement, and strong reference frame free measurement, respectively. Our results also elaborate how these three measures are related and how they can be transformed from each other. This framework can be further extended to other scenarios and serves as a universal quantumness measure.
- Apr 25 2017 quant-ph arXiv:1704.06915v1Measuring quantum states provides means to generate genuine random numbers. It has been shown that genuine randomness can be obtained even with an uncharacterized quantum source. In this work, we propose a framework that formalizes the idea of realizing source-independent quantum random number generation via measuring coherence. Without full state tomography, the coherence of the source can be estimated by coherence witnesses. The existing uncertainty-relation-based schemes can be treated as special cases under the coherence framework, as we design a nonlinear coherence witness that can essentially yield the same results. Meanwhile, we propose a source-independent random number generation scheme, which can achieve a higher randomness generation rate than the uncertainty-relation-based ones.
- Apr 20 2017 quant-ph arXiv:1704.05755v1Coherence, the superposition of orthogonal quantum states, is indispensable in various quantum processes. Inspired by the polynomial invariant for classifying and quantifying entanglement, we first define polynomial coherence measure and systematically investigate its properties. Except for the qubit case, we show that there is no polynomial coherence measure satisfying the criterion that its value takes zero if and only if for incoherent states. Then, we release this strict criterion and obtain a necessary condition for polynomial coherence measure. Furthermore, we give a typical example of polynomial coherence measure for pure states and extend it to mixed states via a convex-roof construction. Analytical formula of our convex-roof polynomial coherence measure is obtained for symmetric states which are invariant under arbitrary basis permutation. Consequently, for general mixed states, we give a lower bound of our coherence measure.
- Mar 09 2017 quant-ph cond-mat.supr-con arXiv:1703.02548v1We convert propagating qubits encoded as superpositions of zero and one photons to the motion of a micrometer-sized mechanical resonator. Using quantum state tomography, we determine the density matrix of both the propagating photons and the mechanical resonator. By comparing a sufficient set of states before and after conversion, we determine the average process fidelity to be $F_{\textrm{avg}} = 0.83\substack{+0.03-0.06}$ which exceeds the classical bound for the conversion of an arbitrary qubit state. This conversion ability is necessary for using mechanical resonators in emerging quantum communication and modular quantum computation architectures.
- Mar 06 2017 quant-ph arXiv:1703.01021v2Quantum digital signatures (QDS) provide a means for signing electronic communications with informationtheoretic security. However, all previous demonstrations of quantum digital signatures assume trusted measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key distribution. Here, we exploit a measurement-device-independent (MDI) quantum network, over a 200-square-kilometer metropolitan area, to perform a field test of a three-party measurement-device-independent quantum digital signature (MDI-QDS) scheme that is secure against any detector side-channel attack. In so doing, we are able to successfully sign a binary message with a security level of about 1E-7. Remarkably, our work demonstrates the feasibility of MDI-QDS for practical applications.
- Dec 09 2016 quant-ph arXiv:1612.02573v2Measurement outcomes of a quantum state can be genuinely random (unpredictable) according to the basic laws of quantum mechanics. The Heisenberg-Robertson uncertainty relation puts constrains on the accuracy of two noncommuting observables. The existing uncertainty relations adopt variance or entropic measures, which are functions of observed outcome distributions, to quantify the uncertainty. According to recent studies of quantum coherence, such uncertainty measures contain both classical (predictable) and quantum (unpredictable) components. In order to extract out the quantum effects, we define quantum uncertainty to be the coherence of the state on the measurement basis. We discover a quantum uncertainty relation of coherence between two measurement non-commuting bases. Furthermore, we analytically derive the quantum uncertainty relation for the qubit case with three widely adopted coherence measures, the relative entropy using coherence, the coherence of formation, and the $l_1$ norm of coherence.
- The randomness from a quantum random number generator (QRNG) relies on the accurate characterization of its devices. However, device imperfections and inaccurate characterizations can result in wrong entropy estimation and bias in practice, which highly affects the genuine randomness generation and may even induce the disappearance of quantum randomness in an extreme case. Here we experimentally demonstrate a measurement-device-independent (MDI) QRNG based on time-bin encoding to achieve certified quantum randomness even when the measurement devices are uncharacterized and untrusted. The MDI-QRNG is randomly switched between the regular randomness generation mode and a test mode, in which four quantum states are randomly prepared to perform measurement tomography in real-time. With a clock rate of 25 MHz, the MDI-QRNG generates a final random bit rate of 5.7 Kbps. Such implementation with an all-fiber setup provides an approach to construct a fully-integrated MDI-QRNG with trusted but error-prone devices in practice.
- Nov 23 2016 quant-ph arXiv:1611.07126v2Random numbers are indispensable for a variety of applications ranging from testing physics foundation to information encryption. In particular, nonlocality tests provide a strong evidence to our current understanding of nature -- quantum mechanics. All the random number generators (RNG) used for the existing tests are constructed locally, making the test results vulnerable to the freedom-of-choice loophole. We report an experimental realization of RNGs based on the arrival time of cosmic photons. The measurement outcomes (raw data) pass the standard NIST statistical test suite. We present a realistic design to employ these RNGs in a Bell test experiment, which addresses the freedom-of-choice loophole.
- Nov 09 2016 quant-ph arXiv:1611.02524v1The decoy-state scheme is the most widely implemented quantum key distribution protocol in practice. In order to account for the finite-size key effects on the achievable secret key generation rate, a rigorous statistical fluctuation analysis is required. Originally, a heuristic Gaussian-approximation technique was used for this purpose, which, despite of its analytical convenience, was not sufficiently rigorous. The fluctuation analysis has recently been made rigorous by using the Chernoff bound. There is a considerable gap, however, between the key rate bounds obtained from these new techniques and that obtained from the Gaussian assumption. Here, we develop a tighter bound for the decoy-state method, which yields a smaller failure probability. This improvement results in a higher key rate and increases the maximum distance over which secure key exchange is possible. By optimizing the system parameters, our simulation results show that our new method almost closes the gap between the two previously proposed techniques and achieves a similar performance to that of conventional Gaussian approximations.
- Sep 23 2016 quant-ph arXiv:1609.06799v1Quantum information processing provides remarkable advantages over its classical counterpart. Quantum optical systems are proved to be sufficient for realizing general quantum tasks, which however often rely on single photon sources. In practice, imperfect single photon sources, such as weak coherent state source, are used instead, which will inevitably limit the power in demonstrating quantum effects. For instance, with imperfect photon sources, the key rate of the BB84 quantum key distribution protocol will be very low, which fortunately can be resolved by utilizing the decoy state method. As a generalization, we investigate an efficient way to simulate single photons with imperfect ones to an arbitrary desired accuracy when the number of photonic inputs is small. Based on this simulator, we can thus replace the tasks that involve only a few single photon inputs with the ones that only make use of imperfect photon sources. In addition, our method also provides a quantum simulator to quantum computation based on quantum optics. In the main context, we take phase randomized coherent state as an example for analysis. A general photon source applies similarly and may provide some further advantages for certain tasks.
- Sep 02 2016 quant-ph arXiv:1609.00228v3We report on the experimental realization of a ten-photon Greenberger-Horne-Zeilinger state using thin BiB$_{3}$O$_{6}$ crystals. The observed fidelity is $0.606\pm0.029$, demonstrating a genuine entanglement with a standard deviation of 3.6 $\sigma$. This result is further verified using $p$-value calculation, obtaining an upper bound of $3.7\times10^{-3}$ under an assumed hypothesis test. Our experiment paves a new way to efficiently engineer BiB$_{3}$O$_{6}$ crystal-based multi-photon entanglement systems, which provides a promising platform for investigating advanced optical quantum information processing tasks such as boson sampling, quantum error correction and quantum-enhanced measurement.
- Jul 28 2016 quant-ph arXiv:1607.08002v1Witnessing entanglement is crucial in quantum information processing. With properly preparing ancillary states, it has been shown previously that genuine entanglement can be witnessed without trusting measurement devices. In this work, we generalize the scenario and show that generic multipartite entanglement structures, including entanglement of subsystems and entanglement depth, can be witnessed via measurement-device-independent means. As the original measurement-device-independent entanglement witness scheme exploits only one out of four Bell measurement outcomes for each party, a direct generalization to multipartite quantum states will inevitably cause inefficiency in entanglement detection after taking account of statistical fluctuations. To resolve this problem, we also present a way to utilize all the measurement outcomes. The scheme is efficient for multipartite entanglement detection and can be realized with state-of-the-art technologies.
- Jul 12 2016 quant-ph arXiv:1607.02673v3Various quantum-walk based algorithms have been proposed to analyse and rank the centrality of graph vertices. However, issues arise when working with directed graphs --- the resulting non-Hermitian Hamiltonian leads to non-unitary dynamics, and the total probability of the quantum walker is no longer conserved. In this paper, we discuss a method for simulating directed graphs using PT-symmetric quantum walks, allowing probability conserving non-unitary evolution. This method is equivalent to mapping the directed graph to an undirected, yet weighted, complete graph over the same vertex set, and can be extended to cover interdependent networks of directed graphs. Previous work has shown centrality measures based on the CTQW provide an eigenvector-like quantum centrality; using the PT-symmetric framework, we extend these centrality algorithms to directed graphs with a significantly reduced Hilbert space compared to previous proposals. In certain cases, this centrality measure provides an advantage over classical algorithms used in network analysis, for example by breaking vertex rank degeneracy. Finally, we perform a statistical analysis over ensembles of random graphs, and show strong agreement with the classical PageRank measure on directed acyclic graphs.
- Jul 05 2016 quant-ph arXiv:1607.00610v1Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.
- We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.
- Jun 27 2016 quant-ph arXiv:1606.07503v1Teleportation of an entangled state, known as entanglement swapping, plays an essential role in quantum communication and network.Here we report a field-test entanglement swapping experiment with two independent telecommunication band entangled photon-pair sources over the optical fibre network of Hefei city. The two sources are located at two nodes 12 km apart and the Bell-state measurement is performed in a third location which is connected to the two source nodes with 14.7 km and 10.6 km optical fibres. An average visibility of 79.9+/-4.8% is observed in our experiment, which is high enough to infer a violation of Bell inequality. With the entanglement swapping setup, we demonstrate a source independent quantum key distribution, which is also immune to any attack against detection in the measurement site.
- May 26 2016 quant-ph arXiv:1605.07818v2Quantum randomness is considered to be potentially an important resource for information processing. Quantum randomness stems from quantum coherence, whose information-theoretic characterization is currently under investigation. In this work, we link the quantum randomness of a measurement with a particular notion of coherence. We show that the quantum randomness of a local measurement corresponds to the minimum amount of uncertainty about the outcome experienced by a correlated party. The relation between local quantum randomness and quantum correlations is discussed. We observe that the local quantum randomness on one party corresponds to the bits to be sent to a correlated receiver to unlock hidden data.
- May 16 2016 quant-ph arXiv:1605.04030v1Classical correlation can be locked via quantum means--quantum data locking. With a short secret key, one can lock an exponentially large amount of information, in order to make it inaccessible to unauthorized users without the key. Quantum data locking presents a resource-efficient alternative to one-time pad encryption which requires a key no shorter than the message. We report experimental demonstrations of quantum data locking scheme originally proposed by DiVincenzo et al. [Phys. Rev. Lett. 92, 067902 (2004)] and a loss-tolerant scheme developed by Fawzi, Hayde, and Sen [J. ACM. 60, 44 (2013)]. We observe that the unlocked amount of information is larger than the key size in both experiments, exhibiting strong violation of the incremental proportionality property of classical information theory. As an application example, we show the successful transmission of a photo over a lossy channel with quantum data (un)locking and error correction.
- Apr 28 2016 quant-ph arXiv:1604.08093v1Secret sharing of a quantum state, or quantum secret sharing, in which a dealer wants to share certain amount of quantum information with a few players, has wide applications in quantum information. The critical criterion in a threshold secret sharing scheme is confidentiality, with less than the designated number of players, no information can be recovered. Furthermore, in a quantum scenario, one additional critical criterion exists, the capability of sharing entangled and unknown quantum information. Here by employing a six-photon entangled state, we demonstrate a quantum threshold scheme, where the shared quantum secrecy can be efficiently reconstructed with a state fidelity as high as 93%. By observing that any one or two parties cannot recover the secrecy, we show that our scheme meets the confidentiality criterion. Meanwhile, we also demonstrate that entangled quantum information can be shared and recovered via our setting, which demonstrates that our implemented scheme is fully quantum. Moreover, our experimental setup can be treated as a decoding circuit of the 5-qubit quantum error-correcting code with two erasure errors.
- Apr 08 2016 quant-ph arXiv:1604.02046v1Quantum state tomography via local measurements is an efficient tool for characterizing quantum states. However it requires that the original global state be uniquely determined (UD) by its local reduced density matrices (RDMs). In this work we demonstrate for the first time a class of states that are UD by their RDMs under the assumption that the global state is pure, but fail to be UD in the absence of that assumption. This discovery allows us to classify quantum states according to their UD properties, with the requirement that each class be treated distinctly in the practice of simplifying quantum state tomography. Additionally we experimentally test the feasibility and stability of performing quantum state tomography via the measurement of local RDMs for each class. These theoretical and experimental results advance the project of performing efficient and accurate quantum state tomography in practice.
- Mar 04 2016 quant-ph arXiv:1603.01099v1The design, fabrication, and detailed calibration of essential building blocks towards fully integrated linear-optics quantum computation are discussed. Photonic devices are made from silicon nitride rib waveguides, where measurements on ring resonators show small propagation losses. Directional couplers are designed to be insensitive to fabrication variations. Their offset and coupling lengths are measured, as well as the phase difference between the transmitted and reflected light. With careful calibrations, the insertion loss of the directional couplers is found to be small. Finally, an integrated controlled-NOT circuit is characterized by measuring the transmission through different combinations of inputs and outputs. The gate fidelity for the CNOT operation with this circuit is estimated to be 99.81% after post selection. This high fidelity is due to our robust design, good fabrication reproducibility, and extensive characterizations.
- Jan 21 2016 quant-ph arXiv:1601.05379v1We examine the problem of finding the minimum number of Pauli measurements needed to uniquely determine an arbitrary $n$-qubit pure state among all quantum states. We show that only $11$ Pauli measurements are needed to determine an arbitrary two-qubit pure state compared to the full quantum state tomography with $16$ measurements, and only $31$ Pauli measurements are needed to determine an arbitrary three-qubit pure state compared to the full quantum state tomography with $64$ measurements. We demonstrate that our protocol is robust under depolarizing error with simulated random pure states. We experimentally test the protocol on two- and three-qubit systems with nuclear magnetic resonance techniques. We show that the pure state tomography protocol saves us a number of measurements without considerable loss of fidelity. We compare our protocol with same-size sets of randomly selected Pauli operators and find that our selected set of Pauli measurements significantly outperforms those random sampling sets. As a direct application, our scheme can also be used to reduce the number of settings needed for pure-state tomography in quantum optical systems.
- Dec 09 2015 quant-ph arXiv:1512.02352v1Entanglement, a critical resource for quantum information processing, needs to be witnessed in many practical scenarios. Theoretically, witnessing entanglement is by measuring a special Hermitian observable, called entanglement witness (EW), which has non-negative expected outcomes for all separable states but can have negative expectations for certain entangled states. In practice, an EW implementation may suffer from two problems. The first one is \emphreliability. Due to unreliable realization devices, a separable state could be falsely identified as an entangled one. The second problem relates to \emphrobustness. A witness may not to optimal for a target state and fail to identify its entanglement. To overcome the reliability problem, we employ a recently proposed measurement-device-independent entanglement witness, in which the correctness of the conclusion is independent of the implemented measurement devices. In order to overcome the robustness problem, we optimize the EW to draw a better conclusion given certain experimental data. With the proposed EW scheme, where only data postprocessing needs to be modified comparing to the original measurement-device-independent scheme, one can efficiently take advantage of the measurement results to maximally draw reliable conclusions.
- Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.
- Nov 11 2015 quant-ph arXiv:1511.02847v2A Hermitian quantum phase operator is formulated that mirrors the classical phase variable with proper time dependence and satisfies trigonometric identities. The eigenstates of the phase operator are solved in terms of Gegenbauer ultraspherical polynomials in the number state representation.
- Nov 02 2015 quant-ph arXiv:1510.08957v2Quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness --- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at a high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.
- Nov 02 2015 quant-ph arXiv:1510.08960v1Quantum random number generators (QRNGs) output genuine random numbers based upon the uncertainty principle. A QRNG contains two parts in general --- a randomness source and a readout detector. How to remove detector imperfections has been one of the most important questions in practical randomness generation. We propose a simple solution, measurement-device-independent QRNG, which not only removes all detector side channels but is robust against losses. In contrast to previous fully device-independent QRNGs, our scheme does not require high detector efficiency or nonlocality tests. Simulations show that our protocol can be implemented efficiently with a practical coherent state laser and other standard optical components. The security analysis of our QRNG consists mainly of two parts: measurement tomography and randomness quantification, where several new techniques are developed to characterize the randomness associated with a positive-operator valued measure.
- Sep 29 2015 quant-ph arXiv:1509.08389v2Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200 square kilometers metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate ten times larger than previous result. Our results demonstrate that the MDIQKD network, combining the best of both worlds --- security and practicality, constitutes an appealing solution to secure metropolitan communications.
- Aug 24 2015 quant-ph arXiv:1508.05258v1The security of source has become an increasingly important issue in quantum cryptography. Based on the framework of measurement-device-independent quantum-key-distribution (MDI-QKD), the source becomes the only region exploitable by a potential eavesdropper (Eve). Phase randomization is a cornerstone assumption in most discrete-variable (DV-) quantum communication protocols (e.g., QKD, quantum coin tossing, weak coherent state blind quantum computing, and so on), and the violation of such an assumption is thus fatal to the security of those protocols. In this paper, we show a simple quantum hacking strategy, with commercial and homemade pulsed lasers, by Eve that allows her to actively tamper with the source and violate such an assumption, without leaving a trace afterwards. Furthermore, our attack may also be valid for continuous-variable (CV-) QKD, which is another main class of QKD protocol, since, excepting the phase random assumption, other parameters (e.g., intensity) could also be changed, which directly determine the security of CV-QKD.
- Aug 21 2015 quant-ph arXiv:1508.04880v2Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts---a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over $5\times 10^3$ bit/s.
- Jun 01 2015 quant-ph arXiv:1505.08142v1In conventional quantum key distribution (QKD) protocols, security is guaranteed by estimating the amount of leaked information through monitoring signal disturbance, which, in practice, is generally caused by environmental noise and device imperfections rather than eavesdropping. Such estimation therefore tends to overrate the amount of leaked information in practice, leads to a fundamental threshold of the bit error rate. The threshold becomes a bottleneck of the development of practical QKD systems. In classical communication, according to Shannon's communication theory, information can transform through a noisy channel even if the background noise is very strong compare to the signal and hence the threshold of the bit error rate tends to 50%. One might wonder whether a QKD scheme can also tolerate error rate as high as 50%. The question is answered affirmatively with the recent work of round-robin differential phase-shift (RRDPS) protocol, which breaks through the fundamental threshold of the bit error rate and indicates another potential direction in the field of quantum cryptography. The key challenge to realize the RRDPS scheme lies on the measurement device, which requires a variable-delay interferometer. The delay needs to be chosen from a set of predetermined values randomly. Such measurement can be realized by switching between many interferometers with different delays at a high speed in accordance with the system repetition rate. The more delay values can be chosen from, the higher error rate can be tolerated. By designing an optical system with multiple switches and employing an active phase stabilization technology, we successfully construct a variable-delay interferometer with 128 actively selectable delays. With this measurement, we experimentally demonstrate the RRDPS QKD protocol and obtain a final key rate of 15.54 bps via a total loss of 18 dB and 8.9% error rate.
- Jun 01 2015 quant-ph arXiv:1505.08076v1In quantum key distribution (QKD), the bit error rate is used to estimate the information leakage and hence determines the amount of privacy amplification --- making the final key private by shortening the key. In general, there exists a threshold of the error rate for each scheme, above which no secure key can be generated. This threshold puts a restriction on the environment noises. For example, a widely used QKD protocol --- BB84 --- cannot tolerate error rates beyond 25%. A new protocol, round-robin differential phase shifted (RRDPS) QKD, essentially removes this restriction and can in principle tolerate more environment disturbance. Here, we propose and experimentally demonstrate a passive RRDPS QKD scheme. In particular, our 500 MHz passive RRDPS QKD system is able to generate a secure key over 50 km with a bit error rate as high as 29%. This scheme should find its applications in noisy environment conditions.
- May 19 2015 quant-ph arXiv:1505.04032v2Based on the theory of quantum mechanics, intrinsic randomness in measurement distinguishes quantum effects from classical ones. From the perspective of states, this quantum feature can be summarized as coherence or superposition in a specific (classical) computational basis. Recently, by regarding coherence as a physical resource, Baumgratz et al.~present a comprehensive framework for coherence measures. Here, we propose a quantum coherence measure essentially using the intrinsic randomness of measurement. The proposed coherence measure provides an answer to the open question in completing the resource theory of coherence. Meanwhile, we show that the coherence distillation process can be treated as quantum extraction, which can be regarded as an equivalent process of classical random number extraction. From this viewpoint, the proposed coherence measure also clarifies the operational aspect of quantum coherence. Finally, our results indicate a strong similarity between two types of quantumness --- coherence and entanglement.
- May 19 2015 quant-ph arXiv:1505.04272v1Bell test is one of the most important tools in quantum information science. On the one hand, it enables fundamental test for the physics laws of nature, and on the other hand, it can be also applied in varieties of device independent tasks such as quantum key distribution and random number generation. In practice, loopholes existing in experimental demonstrations of Bell tests may affect the validity of the conclusions. In this work, we focus on the randomness (freewill) loophole and investigate the randomness requirement in a well-known Bell test, the Clauser-Horne test, under various conditions. With partially random inputs, we explicitly bound the Bell value for all local hidden variable models by optimizing the classical strategy. Our result thus puts input randomness requirement on the Clauser-Horne test under varieties of practical scenarios. The employed analysis technique can be generalized to other Bell's inequalities.
- May 15 2015 quant-ph arXiv:1505.03740v1Random number plays a key role in information science, especially in cryptography. Based on the probabilistic nature of quantum mechanics, quantum random number generators can produce genuine randomness. In particular, random numbers can be produced from laser phase fluctuations with a very high speed, typically in the Gbps regime. In this work, by developing a physical model, we investigate the origin of the randomness in quantum random number generators based on laser phase fluctuations. We show how the randomness essentially stems from spontaneous emissions. The laser phase fluctuation can be quantitatively evaluated from basic principles and also qualitatively explained by the Brownian motion model. After taking account of practical device precision, we show that the randomness generation speed is limited by the finite resolution of detection devices. Our result also provides the optimal experiment design in order to achieve the maximum generation speed.
- May 12 2015 quant-ph arXiv:1505.02481v2The security of quantum key distribution (QKD) relies on the Heisenberg uncertainty principle, with which legitimate users are able to estimate information leakage by monitoring the disturbance of the transmitted quantum signals. Normally, the disturbance is reflected as bit flip errors in the sifted key; thus, privacy amplification, which removes any leaked information from the key, generally depends on the bit error rate. Recently, a round-robin differential-phase-shift QKD protocol for which privacy amplification does not rely on the bit error rate [Nature 509, 475 (2014)] was proposed. The amount of leaked information can be bounded by the sender during the state-preparation stage and hence, is independent of the behaviour of the unreliable quantum channel. In our work, we apply the tagging technique to the protocol and present a tight bound on the key rate and employ a decoy-state method. The effects of background noise and misalignment are taken into account under practical conditions. Our simulation results show that the protocol can tolerate channel error rates close to 50% within a typical experiment setting. That is, there is a negligible restriction on the error rate in practice.
- We demonstrate that a tensor product structure and optical analogy of quantum entanglement can be obtained by introducing pseudorandom phase sequences into classical fields with two orthogonal modes. Using the classical analogy, we discuss efficient simulation of several typical quantum states, including product state, Bell states, GHZ state, and W state. By performing quadrature demodulation scheme, we propose a sequence permutation mechanism to simulate certain quantum states and a generalized gate array model to simulate quantum algorithm, such as Shor's algorithm and Grover's algorithm. The research on classical simulation of quantum states is important, for it not only enables potential beyond quantum computation, but also provides useful insights into fundamental concepts of quantum mechanics.
- Oct 21 2014 quant-ph arXiv:1410.5260v1In conventional quantum key distribution protocols, the secure key is normally extracted from the measurement outcomes of the system. Here, a different approach is proposed, where the secure key is extracted from the measurement bases, rather than outcomes. Compared to the original Bennett-Brassard-1984 protocol, the proposed protocol involves no hardware change but modifications in data postprocessing. We show that this protocol is more robust against detector efficiency attacks and photon-number-splitting attacks when practical detectors and photon sources are used.
- Oct 14 2014 quant-ph arXiv:1410.3217v2Coherent state photon sources are widely used in quantum information processing. In many applications, such as quantum key distribution (QKD), a coherent state is functioned as a mixture of Fock states by assuming its phase is continuously randomized. In practice, such a crucial assumption is often not satisfied and, therefore, the security of existing QKD experiments is not guaranteed. To bridge this gap, we provide a rigorous security proof of QKD with discrete-phase-randomized coherent state sources. Our results show that the performance of the discrete-phase randomization case is close to its continuous counterpart with only a small number (say, 10) of discrete phases. Comparing to the conventional continuous phase randomization case, where an infinite amount of random bits are required, our result shows that only a small amount (say, 4 bits) of randomness is needed.
- Sep 30 2014 quant-ph arXiv:1409.7875v1The Clauser-Horne-Shimony-Holt inequality test is widely used as a mean of invalidating the local deterministic theories and a tool of device independent quantum cryptographic tasks. There exists a randomness (freewill) loophole in the test, which is widely believed impossible to be closed perfectly. That is, certain random inputs are required for the test. Following a randomness quantification method used in literature, we investigate the randomness required in the test under various assumptions. By comparing the results, one can conclude that the key to make the test result reliable is to rule out correlations between multiple runs.
- Sep 01 2014 quant-ph arXiv:1408.7087v1Envariance, or environment-assisted invariance, is a recently identified symmetry for maximally entangled states in quantum theory with important ramifications for quantum measurement, specifically for understanding Born's rule. We benchmark the degree to which nature respects this symmetry by using entangled photon pairs. Our results show quantum states can be 99.66(4)% envariant as measured using the quantum fidelity, and 99.963(5)% as measured using a modified Bhattacharya Coefficient, as compared with a perfectly envariant system which would be 100% in either measure. The deviations can be understood by the less-than-maximal entanglement in our photon pairs.
- Aug 20 2014 quant-ph arXiv:1408.4426v1We propose a QKD protocol for trusted node relays. Our protocol shifts the communication and computational weight of classical post-processing to the end users by reassigning the roles of error correction and privacy amplification, while leaving the exchange of quantum signals untouched. We perform a security analysis for this protocol based on the BB84 protocol on the level of infinite key formulas, taking into account weak coherent implementations involving decoy analysis.
- Aug 12 2014 quant-ph arXiv:1408.2330v1A main type of obstacles of practical applications of quantum key distribution (QKD) network is various attacks on detection. Measurement-device-independent QKD (MDIQKD) protocol is immune to all these attacks and thus a strong candidate for network security. Recently, several proof-of-principle demonstrations of MDIQKD have been performed. Although novel, those experiments are implemented in the laboratory with secure key rates less than 0.1 bps. Besides, they need manual calibration frequently to maintain the system performance. These aspects render these demonstrations far from practicability. Thus, justification is extremely crucial for practical deployment into the field environment. Here, by developing an automatic feedback MDIQKD system operated at a high clock rate, we perform a field test via deployed fiber network of 30 km total length, achieving a 16.9 bps secure key rate. The result lays the foundation for a global quantum network which can shield from all the detection-side attacks.
- Jul 31 2014 quant-ph arXiv:1407.8012v1Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1 bps. Here, by developing a 75 MHz clock rate fully-automatic and highly-stable system, and superconducting nanowire single photon detectors with detection efficiencies more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate of three orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security.
- Jul 16 2014 quant-ph arXiv:1407.3862v1Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum+weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.
- Jul 11 2014 quant-ph arXiv:1407.2930v3The wave-particle duality dates back to Einstein's explanation of the photoelectric effect through quanta of light and de Broglie's hypothesis of matter waves. Quantum mechanics uses an abstract description for the behavior of physical systems such as photons, electrons, or atoms. Whether quantum predictions for single systems in an interferometric experiment allow an intuitive understanding in terms of the particle or wave picture, depends on the specific configuration which is being used. In principle, this leaves open the possibility that quantum systems always either behave definitely as a particle or definitely as a wave in every experimental run by a priori adapting to the specific experimental situation. This is precisely what is tried to be excluded by delayed-choice experiments, in which the observer chooses to reveal the particle or wave character -- or even a continuous transformation between the two -- of a quantum system at a late stage of the experiment. We review the history of delayed-choice gedanken experiments, which can be traced back to the early days of quantum mechanics. Then we discuss their experimental realizations, in particular Wheeler's delayed choice in interferometric setups as well as delayed-choice quantum erasure and entanglement swapping. The latter is particularly interesting, because it elevates the wave-particle duality of a single quantum system to an entanglement-separability duality of multiple systems.
- Jul 09 2014 quant-ph arXiv:1407.1924v3In the postprocessing of quantum key distribution, the raw key bits from the mismatched-basis measurements, where two parties use different bases, are normally discarded. Here, we propose a postprocessing method that exploits measurement statistics from mismatched-basis cases, and prove that incorporating these statistics enables uncharacterized qubit sources to be used in the measurement-device-independent quantum key distribution protocol and the Bennett-Brassard 1984 protocol, a case which is otherwise impossible.
- May 16 2014 quant-ph arXiv:1405.3761v3The decoy-state method is widely used in practical quantum key distribution systems to replace ideal single photon sources with realistic light sources by varying intensities. Instead of active modulation, the passive decoy-state method employs built-in decoy states in a parametric down-conversion photon source, which can decrease the side channel information leakage in decoy state preparation and hence increase the security. By employing low dark count up-conversion single photon detectors, we have experimentally demonstrated the passive decoy-state method over a 50-km-long optical fiber and have obtained a key rate of about 100 bit/s. Our result suggests that the passive decoy-state source is a practical candidate for future quantum communication implementation.
- May 09 2014 quant-ph physics.optics arXiv:1405.2068v1Although interference is a classical-wave phenomenon, the superposition principle, which underlies interference of individual particles, is at the heart of quantum physics. An interaction-free measurements (IFM) harnesses the wave-particle duality of single photons to sense the presence of an object via the modification of the interference pattern, which can be accomplished even if the photon and the object haven't interacted with each other. By using the quantum Zeno effect, the efficiency of an IFM can be made arbitrarily close to unity. Here we report an on-chip realization of the IFM based on silicon photonics. We exploit the inherent advantages of the lithographically written waveguides: excellent interferometric phase stability and mode matching, and obtain multipath interference with visibility above 98%. We achieved a normalized IFM efficiency up to 68.2%, which exceeds the 50% limit of the original IFM proposal.
- Apr 17 2014 quant-ph arXiv:1404.4205v1Entanglement, the essential resource in quantum information processing, should be witnessed in many tasks such as quantum computing and quantum communication. The conventional entanglement witness method, relying on an idealized implementation of measurements, could wrongly conclude a separable state to be entangled due to imperfect detections. Inspired by the idea of a time-shift attack, we construct an attack on the conventional entanglement witness process and demonstrate that a separable state can be falsely identified to be entangled. To close such detection loopholes, based on a recently proposed measurement-device-independent entanglement witness method, we design and experimentally demonstrate a measurement-device-independent entanglement witness for a variety of two-qubit states. By the new scheme, we show that an entanglement witness can be realized without detection loopholes.
- Mar 21 2014 quant-ph arXiv:1403.5082v2Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect.
- Mar 12 2014 quant-ph arXiv:1403.2478v1In a practical continuous-variable quantum-key distribution (CVQKD), the fluctuations of the local oscillator (LO) not only make the normalization of Bob's measurement outcomes difficult, but also can change the signal-to-noise ratio (SNR) of an imperfect balanced homodyne detector (BHD), which may lead the security of a practical system of CVQKD to be compromised severely. In this paper, we propose that the LO intensity can be manipulated by the legitimate parties, i.e., being tuned and stabilized to a required constant value, to eliminate the impact of LO fluctuations and defeat Eve's potential attack on the LO. Moreover, we show that the secret key rate can be increased over a noisy channel, especially the channels of metropolitan QKD networks, by tuning the intensity of LO and thus the SNR of a practical BHD to an optimal value, and we find that, counterintuitively, the requirement on BHD (i.e., high detection efficiency and low electronic noise) can also be reduced in this case. To realize this manipulation, we give a schematic setup which thus can be used to enhance the security of a practical CVQKD system.
- We present a practical high-speed quantum random number generator, where the timing of single-photon detection relative to an external time reference is measured as the raw data. The bias of the raw data can be substantially reduced compared with the previous realizations. The raw random bit rate of our generator can reach 109 Mbps. We develop a model for the generator and evaluate the min-entropy of the raw data. Toeplitz matrix hashing is applied for randomness extraction, after which the final random bits are able to pass the standard randomness tests.
- Dec 19 2013 quant-ph arXiv:1312.5025v4Measurement-device-independent quantum key distribution (MDI-QKD), leaving the detection procedure to the third partner and thus being immune to all detector side-channel attacks, is very promising for the construction of high-security quantum information networks. We propose a scheme to implement MDI-QKD, but with continuous variables instead of discrete ones, i.e., with the source of Gaussian-modulated coherent states, based on the principle of continuous-variable entanglement swapping. This protocol not only can be implemented with current telecom components but also has high key rates compared to its discrete counterpart; thus it will be highly compatible with quantum networks.
- Sep 17 2013 quant-ph arXiv:1309.3819v2Measurement-device-independent quantum key distribution (MDIQKD) is proposed to be secure against any possible detection attacks. The security of the original proposal relies on the assumption that the legitimate users can fully characterize the encoding systems including sources. Here, we propose a MDIQKD protocol where we allow uncharacterized encoding systems as long as qubit sources are used. A security proof of the MDIQKD protocol is presented that does not need the knowledge of the encoding states. Simulation results show that the scheme is practical.
- Sep 16 2013 quant-ph arXiv:1309.3406v2A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain fast memories, our scheme allows a higher repetition rate than that of quantum repeaters, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations.
- May 31 2013 physics.optics quant-ph arXiv:1305.7000v1We demonstrate optical time domain reflectometry over 200 km of optical fiber using low-noise NbTiN superconducting single-photon detectors integrated with Si3N4 waveguides. Our small detector footprint enables high timing resolution of 50ps and a dark count rate of 3 Hz with unshielded fibers, allowing for identification of defects along the fiber over a dynamic range of 37.4 dB. Photons scattered and reflected back from the fiber under test can be detected in free-running mode without showing dead zones or other impairments often encountered in semiconductor photon-counting optical time domain reflectometers.
- Apr 25 2013 quant-ph arXiv:1304.6462v2We report a free-space entanglement-based quantum key distribution experiment, implementing the biased basis protocol between two sites which are 15.3 km apart. Photon pairs from a polarization-entangled source are distributed through two 7.8-km free-space optical links. An optimal bias 20:80 between the X and Z basis is used. A post-processing scheme with finite-key analysis is applied to extract the final secure key. After three-hour continuous operation at night, a 4293-bit secure key is obtained, with a final key rate of 0.124 bit per raw key bit which increases the final key rate by 14.8% comparing to the standard BB84 case. Our results experimentally demonstrate that the efficient BB84 protocol, which increases key generation efficiency by biasing Alice and Bob's basis choices, is potentially useful for the ground-satellite quantum communication.
- Apr 22 2013 quant-ph arXiv:1304.5322v2We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the $Z$ basis and decoy states in the $X$ and $Z$ basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states.
- Apr 10 2013 quant-ph arXiv:1304.2541v2Quantum key distribution (QKD) utilizes the laws of quantum mechanics to achieve information-theoretically secure key generation. This field is now approaching the stage of commercialization, but many practical QKD systems still suffer from security loopholes due to imperfect devices. In fact, practical attacks have successfully been demonstrated. Fortunately, most of them only exploit detection-side loopholes which are now closed by the recent idea of measurement-device-independent QKD. On the other hand, little attention is paid to the source which may still leave QKD systems insecure. In this work, we propose and demonstrate an attack that exploits a source-side loophole existing in qubit-based QKD systems using a weak coherent state source and decoy states. Specifically, by implementing a linear-optics unambiguous-state-discrimination measurement, we show that the security of a system without phase randomization --- which is a step assumed in conventional security analyses but sometimes neglected in practice --- can be compromised. We conclude that implementing phase randomization is essential to the security of decoy-state QKD systems under current security analyses.