results for au:Lovelace_G in:gr-qc

- Apr 12 2018 gr-qc astro-ph.HE arXiv:1804.03704v1Characterizing the properties of black holes is one of the most important science objectives for gravitational-wave observations. Astrophysical evidence suggests that black holes that are nearly extremal (i.e. spins near the theoretical upper limit) might exist and thus might be among the merging black holes observed with gravitational waves. In this paper, we explore how well current gravitational wave parameter estimation methods can measure the spins of rapidly spinning black holes in binaries. We simulate gravitational-wave signals using numerical-relativity waveforms for nearly-extremal, merging black holes. For simplicity, we confine our attention to binaries with spins parallel or antiparallel with the orbital angular momentum. We find that recovering the holes' nearly extremal spins is challenging. When the spins are nearly extremal and parallel to each other, the resulting parameter estimates do recover spins that are large, though the recovered spin magnitudes are still significantly smaller than the true spin magnitudes. When the spins are nearly extremal and antiparallel to each other, the resulting parameter estimates recover the small effective spin but incorrectly estimate the individual spins as nearly zero. We study the effect of spin priors and argue that a commonly used prior (uniform in spin magnitude and direction) hinders unbiased recovery of large black-hole spins.
- Mar 22 2018 gr-qc arXiv:1803.07695v1In this paper, we test the performance of templates in detection and characterization of Spin-orbit resonant (SOR) binaries. We use precessing SEOBNRv3 waveforms as well as \it four numerical relativity (NR) waveforms to model GWs from SOR binaries and filter them through IMRPhenomD, SEOBNRv4 (non-precessing) and IMRPhenomPv2 (precessing) approximants. We find that IMRPhenomD and SEOBNRv4 recover only $\sim70\%$ of injections with fitting factor (FF) higher than 0.97 (or 90\% of injections with ${\rm FF} >0.9$).However, using the sky-maxed statistic, IMRPhenomPv2 performs magnificently better than their non-precessing counterparts with recovering $99\%$ of the injections with FFs higher than 0.97. Interestingly, injections with $\Delta \phi = 180^{\circ}$ have higher FFs ($\Delta \phi$ is the angle between the components of the black hole spins in the plane orthogonal to the orbital angular momentum) as compared to their $\Delta \phi =0^{\circ}$ and generic counterparts. This implies that we will have a slight observation bias towards $\Delta \phi=180^{\circ}$ SORs while using non-precessing templates for searches. All template approximants are able to recover most of the injected NR waveforms with FFs $>0.95$. For all the injections including NR, the error in estimating chirp mass remains below $<10\%$ with minimum error for $\Delta \phi = 180^{\circ}$ resonant binaries. The symmetric mass ratio can be estimated with errors below $15\%$. The effective spin parameter $\chi_{\rm eff}$ is measured with maximum absolute error of 0.13. The in-plane spin parameter $\chi_p$ is mostly underestimated indicating that a precessing signal will be recovered as a relatively less precessing signal. Based on our findings, we conclude that we not only need improvements in waveform models towards precession and non-quadrupole modes but also better search strategies for precessing GW signals.
- Mar 01 2018 gr-qc astro-ph.CO arXiv:1802.10194v2The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically-polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy-densities of tensor, vector, and scalar modes at 95% credibility to $\Omega^T_0 < 5.6 \times 10^{-8}$, $\Omega^V_0 < 6.4\times 10^{-8}$, and $\Omega^S_0 < 1.1\times 10^{-7}$ at a reference frequency $f_0 = 25$ Hz.
- Feb 15 2018 gr-qc arXiv:1802.05241v1We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0e-8, +1e-9] Hz/s. Potential signals could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h_0 is 4e-25 near 170 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 1.3e-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ~1.5e-25.
- Dec 19 2017 gr-qc astro-ph.GA arXiv:1712.05836v2In response to LIGO's observation of GW170104, we performed a series of full numerical simulations of binary black holes, each designed to replicate likely realizations of its dynamics and radiation. These simulations have been performed at multiple resolutions and with two independent techniques to solve Einstein's equations. For the nonprecessing and precessing simulations, we demonstrate the two techniques agree mode by mode, at a precision substantially in excess of statistical uncertainties in current LIGO's observations. Conversely, we demonstrate our full numerical solutions contain information which is not accurately captured with the approximate phenomenological models commonly used to infer compact binary parameters. To quantify the impact of these differences on parameter inference for GW170104 specifically, we compare the predictions of our simulations and these approximate models to LIGO's observations of GW170104.
- Dec 19 2017 gr-qc arXiv:1712.06533v1In this work we study the dynamics of spinning binary black hole systems in the strong field regime. For this purpose we extract from numerical relativity simulations the binding energy, specific orbital angular momentum, and gauge-invariant orbital frequency. The goal of our work is threefold: First, we extract the individual spin contributions to the binding energy, in particular the spin-orbit, spin-spin, and cubic-in-spin terms. Second, we compare our results with predictions from waveform models and find that while post-Newtonian approximants are not capable of representing the dynamics during the last few orbits before merger, there is good agreement between our data and effective-one-body approximants as well as the numerical relativity surrogate models. Finally, we present phenomenological representations for the binding energy for non-spinning systems with mass ratios up to $q = 10$ and for the spin-orbit interaction for mass ratios up to $q = 8$ obtaining accuracies of $\lesssim 0.1\%$ and $\lesssim 6\%$, respectively.
- Dec 05 2017 gr-qc astro-ph.CO arXiv:1712.01168v2Cosmic strings are topological defects which can be formed in GUT-scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension $G\mu$ and the intercommutation probability, using not only the burst analysis performed on the O1 data set, but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and Big-Bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.
- Nov 21 2017 gr-qc astro-ph.HE arXiv:1711.06843v1We present the results of a search for long-duration gravitational wave transients in the data of the LIGO Hanford and LIGO Livingston second generation detectors between September 2015 and January 2016, with a total observational time of 49 days. The search targets gravitational wave transients of \unit[10 -- 500]s duration in a frequency band of \unit[24 -- 2048]Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. No significant events were observed. %All candidate triggers were consistent with the expected background, As a result we set 90\% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also show that the search is sensitive to sources in the Galaxy emitting at least $\sim$ \unit[$10^{-8}$]$\mathrm{M_{\odot} c^2}$ in gravitational waves.
- Nov 16 2017 astro-ph.HE gr-qc arXiv:1711.05578v1On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through gravitational waves with electromagnetic observations. The source's luminosity distance is $340^{+140}_{-140}$ Mpc, corresponding to redshift $0.07^{+0.03}_{-0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity.
- Oct 26 2017 astro-ph.HE gr-qc arXiv:1710.09320v1The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the equation of state of nuclear matter. This could be either a black hole or a neutron star (NS), with the latter being either long-lived or too massive for stability implying delayed collapse to a black hole. Here, we present a search for gravitational waves from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short ($\lesssim1$ s) and intermediate-duration ($\lesssim 500$ s) signals, which includes gravitational-wave emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root-sum-square of the gravitational-wave strain emitted from 1--4 kHz is $h_{\rm rss}^{50\%}=2.1\times 10^{-22}$ Hz$^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is $h_{\rm rss}^{50\%}=8.4\times 10^{-22}$ Hz$^{-1/2}$ for a millisecond magnetar model, and $h_{\rm rss}^{50\%}=5.9\times 10^{-22}$ Hz$^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.
- Oct 17 2017 gr-qc arXiv:1710.05837v1The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.8_{-1.3}^{+2.7} \times 10^{-9}$ with $90\%$ confidence, compared with $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.1_{-0.7}^{+1.2} \times 10^{-9}$ from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
- Oct 09 2017 gr-qc astro-ph.HE arXiv:1710.02327v2Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, \it narrow-band analyses methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of eleven pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched: in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.
- Sep 28 2017 gr-qc arXiv:1709.09203v1We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously-published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity.
- Sep 28 2017 gr-qc astro-ph.HE arXiv:1709.09660v3On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm-rate of $\lesssim$ 1 in 27000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are $30.5_{-3.0}^{+5.7}$ Msun and $25.3_{-4.2}^{+2.8}$ Msun (at the 90% credible level). The luminosity distance of the source is $540_{-210}^{+130}~\mathrm{Mpc}$, corresponding to a redshift of $z=0.11_{-0.04}^{+0.03}$. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg$^2$ using only the two LIGO detectors to 60 deg$^2$ using all three detectors. For the first time, we can test the nature of gravitational wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.
- Jul 26 2017 gr-qc physics.ins-det arXiv:1707.07774v1Thermal noise is expected to be one of the noise sources limiting the astrophysical reach of Advanced LIGO (once commissioning is complete) and third-generation detectors. Adopting crystalline materials for thin, reflecting mirror coatings, rather than the amorphous coatings used in current-generation detectors, could potentially reduce thermal noise. Understanding and reducing thermal noise requires accurate theoretical models, but modeling thermal noise analytically is especially challenging with crystalline materials. Thermal noise models typically rely on the fluctuation-dissipation theorem, which relates the power spectral density of the thermal noise to an auxiliary elastic problem. In this paper, we present results from a new, open-source tool that numerically solves the auxiliary elastic problem to compute the Brownian thermal noise for both amorphous and crystalline coatings. We employ open-source frameworks to solve the auxiliary elastic problem using a finite-element method, adaptive mesh refinement, and parallel processing that enables us to use high resolutions capable of resolving the thin reflective coating. We compare with approximate analytic solutions for amorphous materials, and we verify that our solutions scale as expected. Finally, we model the crystalline coating thermal noise in an experiment reported by Cole and collaborators (2013), comparing our results to a simpler numerical calculation that treats the coating as an "effectively amorphous" material. We find that treating the coating as a cubic crystal instead of as an effectively amorphous material increases the thermal noise by about 3%. Our results are a step toward better understanding and reducing thermal noise to increase the reach of future gravitational-wave detectors. (Abstract abbreviated.)
- Jul 11 2017 gr-qc astro-ph.IM arXiv:1707.02667v2We report on an all-sky search for periodic gravitational waves in the frequency band 20-475 Hz and with a frequency time derivative in the range of [-1.0, +0.1]e-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are 4e-25 near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest upper limits obtained are 1.5e-25. These upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest upper limits obtained for the strain amplitude are 2.5e-25.
- Jul 11 2017 gr-qc arXiv:1707.02669v2We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1/$\sqrt{{\textrm{Hz}}}$]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of $1.8 \times 10^{-25}$. At the low end of our frequency range, 20 Hz, we achieve upper limits of $3.9 \times 10^{-24}$. At 55 Hz we can exclude sources with ellipticities greater than $10^{-5}$ within 100 pc of Earth with fiducial value of the principal moment of inertia of $10^{38} \textrm{kg m}^2$.
- Jun 13 2017 astro-ph.HE gr-qc arXiv:1706.03119v3We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modelled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range from 25 Hz to 2000 Hz, spanning the current observationally-constrained range of the binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at 175 Hz, with comparable limits set across the most sensitive frequency range from 100 Hz to 200 Hz. At this frequency, the 95 pct upper limit on signal amplitude h0 is 2.3e-25 marginalized over the unknown inclination angle of the neutron star's spin, and 8.03e-26 assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3-4 stronger than those set by other analyses of the same data, and a factor of about 7 stronger than the best upper limits set using initial LIGO data. In the vicinity of 100 Hz, the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on inclination angle, if the most likely inclination angle of 44 degrees is assumed, they are within a factor of 1.7.
- Jun 07 2017 gr-qc astro-ph.HE arXiv:1706.01812v1We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10:11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70,000 years. The inferred component black hole masses are $31.2^{+8.4}_{-6.0}\,M_\odot$ and $19.4^{+5.3}_{-5.9}\,M_\odot$ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, $\chi_\mathrm{eff} = -0.12^{+0.21}_{-0.30}.$ This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is $880^{+450}_{-390}~\mathrm{Mpc}$ corresponding to a redshift of $z = 0.18^{+0.08}_{-0.07}$. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to $m_g \le 7.7 \times 10^{-23}~\mathrm{eV}/c^2$. In all cases, we find that GW170104 is consistent with general relativity.
- May 30 2017 gr-qc arXiv:1705.09833v1We present and assess a Bayesian method to interpret gravitational wave signals from binary black holes. Our method directly compares gravitational wave data to numerical relativity simulations. This procedure bypasses approximations used in semi-analytical models for compact binary coalescence. In this work, we use only the full posterior parameter distribution for generic nonprecessing binaries, drawing inferences away from the set of NR simulations used, via interpolation of a single scalar quantity (the marginalized log-likelihood, $\ln {\cal L}$) evaluated by comparing data to nonprecessing binary black hole simulations. We also compare the data to generic simulations, and discuss the effectiveness of this procedure for generic sources. We specifically assess the impact of higher order modes, repeating our interpretation with both $l\le2$ as well as $l\le3$ harmonic modes. Using the $l\le3$ higher modes, we gain more information from the signal and can better constrain the parameters of the gravitational wave signal. We assess and quantify several sources of systematic error that our procedure could introduce, including simulation resolution and duration; most are negligible. We show through examples that our method can recover the parameters for equal mass, zero spin; GW150914-like; and unequal mass, precessing spin sources. Our study of this new parameter estimation method demonstrates we can quantify and understand the systematic and statistical error. This method allows us to use higher order modes from numerical relativity simulations to better constrain the black hole binary parameters.
- Apr 18 2017 gr-qc arXiv:1704.04628v4During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals and GW151226, produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected, therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass $100\,M_\odot$, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than $0.93~\mathrm{Gpc^{-3}\,yr}^{-1}$ in comoving units at the $90\%$ confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.
- Apr 13 2017 gr-qc arXiv:1704.03719v3Results are presented from a semi-coherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run (O1). The search combines a frequency domain matched filter (Bessel-weighted $\mathcal{F}$-statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No evidence of gravitational waves is found in the frequency range 60-650 Hz. Frequentist 95% confidence strain upper limits, $h_0^{95\%} = 4.0\times10^{-25}$, $8.3\times10^{-25}$, and $3.0\times10^{-25}$ for electromagnetically restricted source orientation, unknown polarization, and circular polarization, respectively, are reported at 106 Hz. They are $\leq 10$ times higher than the theoretical torque-balance limit at 106 Hz.
- Jan 27 2017 astro-ph.HE gr-qc arXiv:1701.07709v5We present the result of searches for gravitational waves from 200 pulsars using data from the first observing run of the Advanced LIGO detectors. We find no significant evidence for a gravitational-wave signal from any of these pulsars, but we are able to set the most constraining upper limits yet on their gravitational-wave amplitudes and ellipticities. For eight of these pulsars, our upper limits give bounds that are improvements over the indirect spin-down limit values. For another 32, we are within a factor of 10 of the spin-down limit, and it is likely that some of these will be reachable in future runs of the advanced detector. Taken as a whole, these new results improve on previous limits by more than a factor of two.
- We employ gravitational-wave radiometry to map the gravitational waves stochastic background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from Advanced LIGO's first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20 - 1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range $F_{\alpha,\Theta}(f) < (0.1 - 56) \times 10^{-8}$ erg cm$^{-2}$ s$^{-1}$ Hz$^{-1}$ (f/25 Hz)$^{\alpha-1}$ depending on the sky location $\Theta$ and the spectral power index $\alpha$. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of $\Omega(f,\Theta) < (0.39-7.6) \times 10^{-8}$ sr$^{-1}$ (f/25 Hz)$^\alpha$ depending on $\Theta$ and $\alpha$. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of $h_0 <$ (6.7, 5.5, and 7.0) $\times 10^{-25}$ respectively, at the most sensitive detector frequencies between 130 - 175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.
- A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced LIGO's first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be $\Omega_0<1.7\times 10^{-7}$ with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ~33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
- Nov 24 2016 gr-qc astro-ph.HE arXiv:1611.07531v2Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analyses on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than $\sim$0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.
- Nov 24 2016 astro-ph.HE gr-qc arXiv:1611.07947v3We present the results of the search for gravitational waves (GWs) associated with $\gamma$-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 $\gamma$-ray bursts for which LIGO data are available with sufficient duration. For all $\gamma$-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of $10^{-2}M_\odot c^2$ were emitted within the $16$-$500\,$Hz band, and we find a median 90% confidence limit of 71$\,$Mpc at 150$\,$Hz. For the subset of 19 short/hard $\gamma$-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90$\,$Mpc for binary neutron star (BNS) coalescences, and 150 and 139$\,$Mpc for neutron star-black hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of 54$\,$Mpc ($z=0.0124$). Assuming the $\gamma$-ray emission is beamed with a jet half-opening angle $\leq 30^{\circ}$, we exclude a BNS and a neutron star-black hole in NGC 3313 as the progenitor of this event with confidence $>99$%. Further, we exclude such progenitors up to a distance of 102$\,$Mpc and 170$\,$Mpc, respectively.
- Nov 14 2016 gr-qc arXiv:1611.03703v3We improve the accuracy of the effective-one-body (EOB) waveforms that were employed during the first observing run of Advanced LIGO for binaries of spinning, nonprecessing black holes by calibrating them to a set of 141 numerical-relativity (NR) waveforms. The NR simulations expand the domain of calibration towards larger mass ratios and spins, as compared to the previous EOBNR model. Merger-ringdown waveforms computed in black-hole perturbation theory for Kerr spins close to extremal provide additional inputs to the calibration. For the inspiral-plunge phase, we use a Markov-chain Monte Carlo algorithm to efficiently explore the calibration space. For the merger-ringdown phase, we fit the NR signals with phenomenological formulae. After extrapolation of the calibrated model to arbitrary mass ratios and spins, the (dominant-mode) EOBNR waveforms have faithfulness --- at design Advanced-LIGO sensitivity --- above $99\%$ against all the NR waveforms, including 16 additional waveforms used for validation, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling for these binary configurations. We find that future NR simulations at mass ratios $\gtrsim 4$ and double spin $\gtrsim 0.8$ will be crucial to resolve discrepancies between different ways of extrapolating waveform models. We also find that some of the NR simulations that already exist in such region of parameter space are too short to constrain the low-frequency portion of the models. Finally, we build a reduced-order version of the EOBNR model to speed up waveform generation by orders of magnitude, thus enabling intensive data-analysis applications during the upcoming observation runs of Advanced LIGO.
- Nov 10 2016 gr-qc astro-ph.HE arXiv:1611.02972v1We present the results from an all-sky search for short-duration gravitational waves in the data of the first run of the Advanced LIGO detectors between September 2015 and January 2016. The search algorithms use minimal assumptions on the signal morphology, so they are sensitive to a wide range of sources emitting gravitational waves. The analyses target transient signals with duration ranging from milliseconds to seconds over the frequency band of 32 to 4096 Hz. The first observed gravitational-wave event, GW150914, has been detected with high confidence in this search; other known gravitational-wave events fall below the search's sensitivity. Besides GW150914, all of the search results are consistent with the expected rate of accidental noise coincidences. Finally, we estimate rate-density limits for a broad range of non-BBH transient gravitational-wave sources as a function of their gravitational radiation emission energy and their characteristic frequency. These rate-density upper-limits are stricter than those previously published by an order-of-magnitude.
- Jul 20 2016 gr-qc astro-ph.HE arXiv:1607.05377v1In fall of 2015, the two LIGO detectors measured the gravitational wave signal GW150914, which originated from a pair of merging black holes. In the final 0.2 seconds (about 8 gravitational-wave cycles) before the amplitude reached its maximum, the observed signal swept up in amplitude and frequency, from 35 Hz to 150 Hz. The theoretical gravitational-wave signal for merging black holes, as predicted by general relativity, can be computed only by full numerical relativity, because analytic approximations fail near the time of merger. Moreover, the nearly-equal masses, moderate spins, and small number of orbits of GW150914 are especially straightforward and efficient to simulate with modern numerical-relativity codes. In this paper, we report the modeling of GW150914 with numerical-relativity simulations, using black-hole masses and spins consistent with those inferred from LIGO's measurement. In particular, we employ two independent numerical-relativity codes that use completely different analytical and numerical methods to model the same merging black holes and to compute the emitted gravitational waveform; we find excellent agreement between the waveforms produced by the two independent codes. These results demonstrate the validity, impact, and potential of current and future studies using rapid-response, targeted numerical-relativity simulations for better understanding gravitational-wave observations.
- We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, accounting for all the spin-weighted quadrupolar modes, and separately accounting for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported in LVC_PE[1] (at 90% confidence), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Followup simulations performed using previously-estimated binary parameters most resemble the data. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz ∈[64 - 82M_⊙], mass ratio q = m2/m1 ∈[0.6,1], and effective aligned spin \chi_eff ∈[-0.3, 0.2], where \chi_eff = (S1/m1 + S2/m2) ⋅\hatL /M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and \chi_eff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole's redshifted mass is consistent with Mf,z between 64.0 - 73.5M_⊙and the final black hole's dimensionless spin parameter is consistent with af = 0.62 - 0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to LVC_PE[1].
- Jun 06 2016 gr-qc astro-ph.HE arXiv:1606.01210v1This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) on September 14, 2015 [1]. Reference presented parameter estimation [2] of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and a 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [2], and we quote updated component masses of $35^{+5}_{-3}\mathrm{M}_\odot$ and $30^{+3}_{-4}\mathrm{M}_\odot$ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate $0.65$ and a secondary spin estimate $0.75$ at 90% probability. Reference [2] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
- Feb 12 2016 gr-qc astro-ph.HE arXiv:1602.03840v2On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be $<0.7$ (at 90% probability). The luminosity distance to the source is $410^{+160}_{-180}$ Mpc, corresponding to a redshift $0.09^{+0.03}_{-0.04}$ assuming standard cosmology. The source location is constrained to an annulus section of $610$ deg$^2$, primarily in the southern hemisphere. The binary merges into a black hole of $62^{+4}_{-4} M_\odot$ and spin $0.67^{+0.05}_{-0.07}$. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
- Jul 02 2015 gr-qc arXiv:1507.00103v1Coalescing binaries of neutron stars (NS) and black holes (BH) are one of the most important sources of gravitational waves for the upcoming network of ground based detectors. Detection and extraction of astrophysical information from gravitational-wave signals requires accurate waveform models. The Effective-One-Body and other phenomenological models interpolate between analytic results and $10-30$ orbit numerical relativity (NR) merger simulations. In this paper we study the accuracy of these models using new NR simulations that span $36-88$ orbits, with mass-ratios and black hole spins $(q,\chi_{BH}) = (7, \pm 0.4), (7, \pm 0.6)$, and $(5, -0.9)$. We find that: (i) the recently published SEOBNRv1 and SEOBNRv2 models of the Effective-One-Body family disagree with each other (mismatches of a few percent) for black hole spins $\geq 0.5$ or $\leq -0.3$, with waveform mismatch accumulating during early inspiral; (ii) comparison with numerical waveforms indicate that this disagreement is due to phasing errors of SEOBNRv1, with SEOBNRv2 in good agreement with all of our simulations; (iii) Phenomenological waveforms disagree with SEOBNRv2 over most of the NSBH binary parameter space; (iv) comparison with NR waveforms shows that most of the model's dephasing accumulates near the frequency interval where it switches to a phenomenological phasing prescription; and finally (v) both SEOBNR and post-Newtonian (PN) models are effectual for NSBH systems, but PN waveforms will give a significant bias in parameter recovery. Our results suggest that future gravitational-wave detection searches and parameter estimation efforts targeted at NSBH systems with $q\lesssim 7$ and $\chi_\mathrm{BH} \approx [-0.9, +0.6]$ will benefit from using SEOBNRv2 templates. For larger black hole spins and/or binary mass-ratios, we recommend the models be further investigated as suitable NR simulations become available.
- Dec 05 2014 gr-qc arXiv:1412.1803v1Astrophysical black holes could be nearly extremal (that is, rotating nearly as fast as possible); therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass $m$ and spin $S$ exceeding the Bowen-York limit of $S/m^2=0.93$. We present improved methods that enable us to simulate merging, nearly extremal black holes more robustly and more efficiently. We use these methods to simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has $S/m^2=0.99$. We also use these methods to simulate a non-precessing binary black hole coalescence, where both black holes have $S/m^2=0.994$, nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; we compare the evolution of the black-hole masses and spins with analytic predictions; and we explore the effect of increasing spin magnitude on the orbital dynamics (the so-called "orbital hangup" effect).
- Nov 27 2014 gr-qc arXiv:1411.7297v2The spin angular momentum $S$ of an isolated Kerr black hole is bounded by the surface area $A$ of its apparent horizon: $8\pi S \le A$, with equality for extremal black holes. In this paper, we explore the extremality of individual and common apparent horizons for merging, rapidly spinning binary black holes. We consider simulations of merging black holes with equal masses $M$ and initial spin angular momenta aligned with the orbital angular momentum, including new simulations with spin magnitudes up to $S/M^2 = 0.994$. We measure the area and (using approximate Killing vectors) the spin on the individual and common apparent horizons, finding that the inequality $8\pi S < A$ is satisfied in all cases but is very close to equality on the common apparent horizon at the instant it first appears. We also introduce a gauge-invariant lower bound on the extremality by computing the smallest value that Booth and Fairhurst's extremality parameter can take for any scaling. Using this lower bound, we conclude that the common horizons are at least moderately close to extremal just after they appear. Finally, following Lovelace et al. (2008), we construct quasiequilibrium binary-black-hole initial data with "overspun" marginally trapped surfaces with $8\pi S > A$ and for which our lower bound on their Booth-Fairhurst extremality exceeds unity. These superextremal surfaces are always surrounded by marginally outer trapped surfaces (i.e., by apparent horizons) with $8\pi S<A$. The extremality lower bound on the enclosing apparent horizon is always less than unity but can exceed the value for an extremal Kerr black hole. (Abstract abbreviated.)
- Jan 07 2014 gr-qc astro-ph.CO arXiv:1401.0939v1The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We also perform a large-scale monte-carlo study to assess the ability to recover each of the 60 hybrid waveforms with early Advanced LIGO and Advanced Virgo sensitivity curves. Our results predict that early Advanced LIGO and Advanced Virgo will have a volume-weighted average sensitive distance of 300Mpc (1Gpc) for $10M_{\odot}+10M_{\odot}$ ($50M_{\odot}+50M_{\odot}$) binary black hole coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. [Abstract abridged for ArXiv, full version in PDF]
- Nov 12 2013 gr-qc arXiv:1311.2544v1Gravitational waves emitted by black-hole binary systems have the highest signal-to-noise ratio in LIGO and Virgo detectors when black-hole spins are aligned with the orbital angular momentum and extremal. For such systems, we extend the effective-one-body inspiral-merger-ringdown waveforms to generic mass ratios and spins calibrating them to 38 numerical-relativity nonprecessing waveforms produced by the SXS Collaboration. The numerical-relativity simulations span mass ratios from 1 to 8, spin magnitudes up to 98% of extremality, and last for 40 to 60 gravitational-wave cycles. When the total mass of the binary is between 20Msun and 200Msun, the effective-one-body nonprecessing (dominant mode) waveforms have overlaps above 99% (using the advanced-LIGO design noise spectral density) with all of the 38 nonprecessing numerical waveforms, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling. Moreover, without further calibration, we show that the precessing effective-one-body (dominant mode) waveforms have overlaps above 97% with two very long, strongly precessing numerical-relativity waveforms, when maximizing only on the initial phase and time.
- Sep 04 2013 gr-qc arXiv:1309.0544v3We compute the periastron advance using the effective-one-body formalism for binary black holes moving on quasi-circular orbits and having spins collinear with the orbital angular momentum. We compare the predictions with the periastron advance recently computed in accurate numerical-relativity simulations and find remarkable agreement for a wide range of spins and mass ratios. These results do not use any numerical-relativity calibration of the effective-one-body model, and stem from two key ingredients in the effective-one-body Hamiltonian: (i) the mapping of the two-body dynamics of spinning particles onto the dynamics of an effective spinning particle in a (deformed) Kerr spacetime, fully symmetrized with respect to the two-body masses and spins, and (ii) the resummation, in the test-particle limit, of all post-Newtonian (PN) corrections linear in the spin of the particle. In fact, even when only the leading spin PN corrections are included in the effective-one-body spinning Hamiltonian but all the test-particle corrections linear in the spin of the particle are resummed we find very good agreement with the numerical results (within the numerical error for equal-mass binaries and discrepancies of at most 1% for larger mass ratios). Furthermore, we specialize to the extreme mass-ratio limit and derive, using the equations of motion in the gravitational skeleton approach, analytical expressions for the periastron advance, the meridional Lense-Thirring precession and spin precession frequency in the case of a spinning particle on a nearly circular equatorial orbit in Kerr spacetime, including also terms quadratic in the spin.
- Sep 04 2013 gr-qc arXiv:1309.0541v2We study the general relativistic periastron advance in spinning black hole binaries on quasi-circular orbits, with spins aligned or anti-aligned with the orbital angular momentum, using numerical-relativity simulations, the post-Newtonian approximation, and black hole perturbation theory. By imposing a symmetry by exchange of the bodies' labels, we devise an improved version of the perturbative result, and use it as the leading term of a new type of expansion in powers of the symmetric mass ratio. This allows us to measure, for the first time, the gravitational self-force effect on the periastron advance of a non-spinning particle orbiting a Kerr black hole of mass M and spin S = -0.5 M^2, down to separations of order 9M. Comparing the predictions of our improved perturbative expansion with the exact results from numerical simulations of equal-mass and equal-spin binaries, we find a remarkable agreement over a wide range of spins and orbital separations.
- Jul 22 2013 gr-qc arXiv:1307.5307v3The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ~100-200 solar masses, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios <= 4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.
- May 28 2013 gr-qc arXiv:1305.5991v2The behavior of merging black holes (including the emitted gravitational waves and the properties of the remnant) can currently be computed only by numerical simulations. This paper introduces ten numerical relativity simulations of binary black holes with equal masses and equal spins aligned or anti-aligned with the orbital angular momentum. The initial spin magnitudes have $|\chi_i| \lesssim 0.95$ and are more concentrated in the aligned direction because of the greater astrophysical interest of this case. We combine this data with five previously reported simulations of the same configuration, but with different spin magnitudes, including the highest spin simulated to date, $\chi_i \approx 0.97$. This data set is sufficiently accurate to enable us to offer improved analytic fitting formulae for the final spin and for the energy radiated by gravitational waves as a function of initial spin. The improved fitting formulae can help to improve our understanding of the properties of binary black hole merger remnants and can be used to enhance future approximate waveforms for gravitational wave searches, such as Effective-One-Body waveforms.
- Apr 23 2013 gr-qc arXiv:1304.6077v3This paper presents a publicly available catalog of 174 numerical binary black-hole simulations following up to 35 orbits. The catalog includes 91 precessing binaries, mass ratios up to 8:1, orbital eccentricities from a few percent to $10^{-5}$, black-hole spins up to 98% of the theoretical maximum, and radiated energies up to 11.1% of the initial mass. We establish remarkably good agreement with post-Newtonian precession of orbital and spin directions for two new precessing simulations, and we discuss other applications of this catalog. Formidable challenges remain: e.g., precession complicates the connection of numerical and approximate analytical waveforms, and vast regions of the parameter space remain unexplored.
- Apr 03 2013 gr-qc astro-ph.HE arXiv:1304.0670v6We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-20 square degrees requires at least three detectors of sensitivity within a factor of ~2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
- Feb 27 2013 gr-qc astro-ph.HE arXiv:1302.6297v2Black hole-neutron star (BHNS) binaries are important sources of gravitational waves for second-generation interferometers, and BHNS mergers are also a proposed engine for short, hard gamma-ray bursts. The behavior of both the spacetime (and thus the emitted gravitational waves) and the neutron star matter in a BHNS merger depend strongly and nonlinearly on the black hole's spin. While there is a significant possibility that astrophysical black holes could have spins that are nearly extremal (i.e. near the theoretical maximum), to date fully relativistic simulations of BHNS binaries have included black-hole spins only up to $S/M^2$=0.9, which corresponds to the black hole having approximately half as much rotational energy as possible, given the black hole's mass. In this paper, we present a new simulation of a BHNS binary with a mass ratio $q=3$ and black-hole spin $S/M^2$=0.97, the highest simulated to date. We find that the black hole's large spin leads to the most massive accretion disk and the largest tidal tail outflow of any fully relativistic BHNS simulations to date, even exceeding the results implied by extrapolating results from simulations with lower black-hole spin. The disk appears to be remarkably stable. We also find that the high black-hole spin persists until shortly before the time of merger; afterwards, both merger and accretion spin down the black hole.
- Nov 27 2012 gr-qc arXiv:1211.6079v2Simulations of binary black hole systems using the Spectral Einstein Code (SpEC) are done on a computational domain that excises the regions inside the black holes. It is imperative that the excision boundaries are outflow boundaries with respect to the hyperbolic evolution equations used in the simulation. We employ a time-dependent mapping between the fixed computational frame and the inertial frame through which the black holes move. The time-dependent parameters of the mapping are adjusted throughout the simulation by a feedback control system in order to follow the motion of the black holes, to adjust the shape and size of the excision surfaces so that they remain outflow boundaries, and to prevent large distortions of the grid. We describe in detail the mappings and control systems that we use. We show how these techniques have been essential in the evolution of binary black hole systems with extreme configurations, such as large spin magnitudes and high mass ratios, especially during the merger, when apparent horizons are highly distorted and the computational domain becomes compressed. The techniques introduced here may be useful in other applications of partial differential equations that involve time-dependent mappings.
- Aug 16 2012 gr-qc arXiv:1208.3034v3When one splits spacetime into space plus time, the Weyl curvature tensor (which equals the Riemann tensor in vacuum) splits into two spatial, symmetric, traceless tensors: the tidal field $E$, which produces tidal forces, and the frame-drag field $B$, which produces differential frame dragging. In recent papers, we and colleagues have introduced ways to visualize these two fields: tidal tendex lines (integral curves of the three eigenvector fields of $E$) and their tendicities (eigenvalues of these eigenvector fields); and the corresponding entities for the frame-drag field: frame-drag vortex lines and their vorticities. These entities fully characterize the vacuum Riemann tensor. In this paper, we compute and depict the tendex and vortex lines, and their tendicities and vorticities, outside the horizons of stationary (Schwarzschild and Kerr) black holes; and we introduce and depict the black holes' horizon tendicity and vorticity (the normal-normal components of $E$ and $B$ on the horizon). For Schwarzschild and Kerr black holes, the horizon tendicity is proportional to the horizon's intrinsic scalar curvature, and the horizon vorticity is proportional to an extrinsic scalar curvature. We show that, for horizon-penetrating time slices, all these entities ($E$, $B$, the tendex lines and vortex lines, the lines' tendicities and vorticities, and the horizon tendicities and vorticities) are affected only weakly by changes of slicing and changes of spatial coordinates, within those slicing and coordinate choices that are commonly used for black holes. [Abstract is abbreviated.]
- Aug 16 2012 gr-qc arXiv:1208.3038v3In recent papers, we and colleagues have introduced a way to visualize the full vacuum Riemann curvature tensor using frame-drag vortex lines and their vorticities, and tidal tendex lines and their tendicities. We have also introduced the concepts of horizon vortexes and tendexes and 3-D vortexes and tendexes (regions where vorticities or tendicities are large). Using these concepts, we discover a number of previously unknown features of quasinormal modes of Schwarzschild and Kerr black holes. These modes can be classified by mode indexes (n,l,m), and parity, which can be electric [(-1)^l] or magnetic [(-1)^(l+1)]. Among our discoveries are these: (i) There is a near duality between modes of the same (n,l,m): a duality in which the tendex and vortex structures of electric-parity modes are interchanged with the vortex and tendex structures (respectively) of magnetic-parity modes. (ii) This near duality is perfect for the modes' complex eigenfrequencies (which are well known to be identical) and perfect on the horizon; it is slightly broken in the equatorial plane of a non-spinning hole, and the breaking becomes greater out of the equatorial plane, and greater as the hole is spun up; but even out of the plane for fast-spinning holes, the duality is surprisingly good. (iii) Electric-parity modes can be regarded as generated by 3-D tendexes that stick radially out of the horizon. As these "longitudinal," near-zone tendexes rotate or oscillate, they generate longitudinal-transverse near-zone vortexes and tendexes, and outgoing and ingoing gravitational waves. The ingoing waves act back on the longitudinal tendexes, driving them to slide off the horizon, which results in decay of the mode's strength. (iv) By duality, magnetic-parity modes are driven in this same manner by longitudinal, near-zone vortexes that stick out of the horizon. [Abstract abridged.]
- Aug 04 2012 gr-qc arXiv:1208.0630v1We investigate the suitability and properties of a quasi-Kinnersley tetrad and a geometrically motivated coordinate system as tools for quantifying both strong-field and wave-zone effects in numerical relativity (NR) simulations. We fix the radial and latitudinal coordinate degrees of freedom of the metric, using the Coulomb potential associated with the quasi-Kinnersley transverse frame. These coordinates are invariants of the spacetime and can be used to unambiguously fix the outstanding spin-boost freedom associated with the quasi-Kinnersley frame (resulting in a preferred quasi-Kinnersley tetrad (QKT)). In the limit of small perturbations about a Kerr spacetime, these coordinates and QKT reduce to Boyer-Lindquist coordinates and the Kinnersley tetrad, irrespective of the simulation gauge choice. We explore the properties of this construction both analytically and numerically, and we gain insights regarding the propagation of radiation described by a super-Poynting vector. We also quantify in detail the peeling properties of the chosen tetrad and gauge. We argue that these choices are particularly well suited for a rapidly converging wave-extraction algorithm as the extraction location approaches infinity, and we explore numerically the extent to which this property remains applicable on the interior of a computational domain. Using a number of additional tests, we verify that the prescription behaves as required in the appropriate limits regardless of simulation gauge. We explore the behavior of the geometrically motivated coordinate system in dynamical binary-black-hole NR mergers, and find them useful for visualizing features in NR simulations such as the spurious "junk" radiation. Finally, we carefully scrutinize the head-on collision of two black holes and, for example, the way in which the extracted waveform changes as it moves through the computational domain.
- Jun 15 2012 gr-qc arXiv:1206.2943v3Initial data for numerical evolutions of binary-black holes have been dominated by "conformally flat" (CF) data (i.e., initial data where the conformal background metric is chosen to be flat) because they are easy to construct. However, CF initial data cannot simulate nearly extremal spins, while more complicated "conformally curved" initial data (i.e., initial data in which the background metric is \emphnot explicitly chosen to be flat), such as initial data where the spatial metric is chosen to be proportional to a weighted superposition of two Kerr-Schild (SKS) black holes can. Here we establish the consistency between the astrophysical results of these two initial data schemes for nonspinning binary systems. We evolve the inspiral, merger, and ringdown of two equal-mass, nonspinning black holes using SKS initial data and compare with an analogous simulation using CF initial data. We find that the resultant gravitational-waveform phases agree to within $\delta \phi \lesssim 10^{-2}$ radians and the amplitudes agree to within $\delta A/A \lesssim 5 \times 10^{-3}$, which are within the numerical errors of the simulations. Furthermore, we find that the final mass and spin of the remnant black hole agree to one part in $10^5
- Feb 06 2012 gr-qc arXiv:1202.0790v2We first use five non-spinning and two mildly spinning (chi_i ≃-0.44, +0.44) numerical-relativity waveforms of black-hole binaries and calibrate an effective-one-body (EOB) model for non-precessing spinning binaries, notably its dynamics and the dominant (2,2) gravitational-wave mode. Then, we combine the above results with recent outcomes of small-mass-ratio simulations produced by the Teukolsky equation and build a prototype EOB model for detection purposes, which is capable of generating inspiral-merger-ringdown waveforms for non-precessing spinning black-hole binaries with any mass ratio and individual black-hole spins -1 ≤chi_i ≲0.7. We compare the prototype EOB model to two equal-mass highly spinning numerical-relativity waveforms of black holes with spins chi_i = -0.95, +0.97, which were not available at the time the EOB model was calibrated. In the case of Advanced LIGO we find that the mismatch between prototype-EOB and numerical-relativity waveforms is always smaller than 0.003 for total mass 20-200 M_⊙, the mismatch being computed by maximizing only over the initial phase and time. To successfully generate merger waveforms for individual black-hole spins chi_i ≳0.7, the prototype-EOB model needs to be improved by (i) better modeling the plunge dynamics and (ii) including higher-order PN spin terms in the gravitational-wave modes and radiation-reaction force.
- Jan 26 2012 gr-qc arXiv:1201.5319v1The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search and parameter-estimation algorithms using numerically generated waveforms, and to foster closer collaboration between the numerical relativity and data analysis communities. The first NINJA project used only a small number of injections of short numerical-relativity waveforms, which limited its ability to draw quantitative conclusions. The goal of the NINJA-2 project is to overcome these limitations with long post-Newtonian - numerical relativity hybrid waveforms, large numbers of injections, and the use of real detector data. We report on the submission requirements for the NINJA-2 project and the construction of the waveform catalog. Eight numerical relativity groups have contributed 63 hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. We summarize the techniques used by each group in constructing their submissions. We also report on the procedures used to validate these submissions, including examination in the time and frequency domains and comparisons of waveforms from different groups against each other. These procedures have so far considered only the $(\ell,m)=(2,2)$ mode. Based on these studies we judge that the hybrid waveforms are suitable for NINJA-2 studies. We note some of the plans for these investigations.
- Oct 12 2011 gr-qc astro-ph.HE arXiv:1110.2229v1Motivated by the possibility of observing gravitational waves from merging black holes whose spins are nearly extremal (i.e., 1 in dimensionless units), we present numerical waveforms from simulations of merging black holes with the highest spins simulated to date: (1) a 25.5-orbit inspiral, merger, and ringdown of two holes with equal masses and spins of magnitude 0.97 aligned with the orbital angular momentum; and (2) a previously reported 12.5-orbit inspiral, merger, and ringdown of two holes with equal masses and spins of magnitude 0.95 anti-aligned with the orbital angular momentum. First, we consider the horizon mass and spin evolution of the new aligned-spin simulation. During the inspiral, the horizon area and spin evolve in remarkably close agreement with Alvi's analytic predictions, and the remnant hole's final spin agrees reasonably well with several analytic predictions. We also find that the total energy emitted by a real astrophysical system with these parameters---almost all of which is radiated during the time included in this simulation---would be 10.952% of the initial mass at infinite separation. Second, we consider the gravitational waveforms for both simulations. After estimating their uncertainties, we compare the waveforms to several post-Newtonian approximants, finding significant disagreement well before merger, although the phase of the TaylorT4 approximant happens to agree remarkably well with the numerical prediction in the aligned-spin case. We find that the post-Newtonian waveforms have sufficient uncertainty that hybridized waveforms will require far longer numerical simulations (in the absence of improved post-Newtonian waveforms) for accurate parameter estimation of low-mass binary systems.
- Aug 30 2011 gr-qc arXiv:1108.5486v2When one splits spacetime into space plus time, the Weyl curvature tensor (vacuum Riemann tensor) gets split into two spatial, symmetric, and trace-free (STF) tensors: (i) the Weyl tensor's so-called "electric" part or tidal field, and (ii) the Weyl tensor's so-called "magnetic" part or frame-drag field. Being STF, the tidal field and frame-drag field each have three orthogonal eigenvector fields which can be depicted by their integral curves. We call the integral curves of the tidal field's eigenvectors tendex lines, we call each tendex line's eigenvalue its tendicity, and we give the name tendex to a collection of tendex lines with large tendicity. The analogous quantities for the frame-drag field are vortex lines, their vorticities, and vortexes. We build up physical intuition into these concepts by applying them to a variety of weak-gravity phenomena: a spinning, gravitating point particle, two such particles side by side, a plane gravitational wave, a point particle with a dynamical current-quadrupole moment or dynamical mass-quadrupole moment, and a slow-motion binary system made of nonspinning point particles. [Abstract is abbreviated; full abstract also mentions additional results.]
- May 20 2011 gr-qc arXiv:1105.3922v2Numerical simulations of binary black holes---an important predictive tool for the detection of gravitational waves---are computationally expensive, especially for binaries with high mass ratios or with rapidly spinning constituent holes. Existing codes for evolving binary black holes rely on explicit timestepping methods, for which the timestep size is limited by the smallest spatial scale through the Courant-Friedrichs-Lewy condition. Binary inspiral typically involves spatial scales (the spatial resolution required by a small or rapidly spinning hole) which are orders of magnitude smaller than the relevant (orbital, precession, and radiation-reaction) timescales characterizing the inspiral. Therefore, in explicit evolutions of binary black holes, the timestep size is typically orders of magnitude smaller than the relevant physical timescales. Implicit timestepping methods allow for larger timesteps, and they often reduce the total computational cost (without significant loss of accuracy) for problems dominated by spatial rather than temporal error, such as for binary-black-hole inspiral in corotating coordinates. However, fully implicit methods can be difficult to implement for nonlinear evolution systems like the Einstein equations. Therefore, in this paper we explore implicit-explicit (IMEX) methods and use them for the first time to evolve black-hole spacetimes. Specifically, as a first step toward IMEX evolution of a full binary-black-hole spacetime, we develop an IMEX algorithm for the generalized harmonic formulation of the Einstein equations and use this algorithm to evolve stationary and perturbed single-black-hole spacetimes. Numerical experiments explore the stability and computational efficiency of our method.
- When one splits spacetime into space plus time, the spacetime curvature (Weyl tensor) gets split into an "electric" part E_jk that describes tidal gravity and a "magnetic" part B_jk that describes differential dragging of inertial frames. We introduce tools for visualizing B_jk (frame-drag vortex lines, their vorticity, and vortexes) and E_jk (tidal tendex lines, their tendicity, and tendexes), and also visualizations of a black-hole horizon's (scalar) vorticity and tendicity. We use these tools to elucidate the nonlinear dynamics of curved spacetime in merging black-hole binaries.
- Oct 15 2010 gr-qc astro-ph.HE arXiv:1010.2777v3Astrophysically realistic black holes may have spins that are nearly extremal (i.e., close to 1 in dimensionless units). Numerical simulations of binary black holes are important tools both for calibrating analytical templates for gravitational-wave detection and for exploring the nonlinear dynamics of curved spacetime. However, all previous simulations of binary-black-hole inspiral, merger, and ringdown have been limited by an apparently insurmountable barrier: the merging holes' spins could not exceed 0.93, which is still a long way from the maximum possible value in terms of the physical effects of the spin. In this paper, we surpass this limit for the first time, opening the way to explore numerically the behavior of merging, nearly extremal black holes. Specifically, using an improved initial-data method suitable for binary black holes with nearly extremal spins, we simulate the inspiral (through 12.5 orbits), merger and ringdown of two equal-mass black holes with equal spins of magnitude 0.95 antialigned with the orbital angular momentum.
- Jul 07 2009 gr-qc arXiv:0907.0869v1Research on extracting science from binary-black-hole (BBH) simulations has often adopted a "scattering matrix" perspective: given the binary's initial parameters, what are the final hole's parameters and the emitted gravitational waveform? In contrast, we are using BBH simulations to explore the nonlinear dynamics of curved spacetime. Focusing on the head-on plunge, merger, and ringdown of a BBH with transverse, antiparallel spins, we explore numerically the momentum flow between the holes and the surrounding spacetime. We use the Landau-Lifshitz field-theory-in-flat-spacetime formulation of general relativity to define and compute the density of field energy and field momentum outside horizons and the energy and momentum contained within horizons, and we define the effective velocity of each apparent and event horizon as the ratio of its enclosed momentum to its enclosed mass-energy. We find surprisingly good agreement between the horizons' effective and coordinate velocities. To investigate the gauge dependence of our results, we compare pseudospectral and moving-puncture evolutions of physically similar initial data; although spectral and puncture simulations use different gauge conditions, we find remarkably good agreement for our results in these two cases. We also compare our simulations with the post-Newtonian trajectories and near-field energy-momentum. [Abstract abbreviated; full abstract also mentions additional results.]
- Dec 17 2008 gr-qc arXiv:0812.3132v1At early times in numerical evolutions of binary black holes, current simulations contain an initial burst of spurious gravitational radiation (also called "junk radiation") which is not astrophysically realistic. The spurious radiation is a consequence of how the binary-black-hole initial data are constructed: the initial data are typically assumed to be conformally flat. In this paper, I adopt a curved conformal metric that is a superposition of two boosted, non-spinning black holes that are approximately 15 orbits from merger. I compare junk radiation of the superposed-boosted-Schwarzschild (SBS) initial data with the junk of corresponding conformally flat, maximally sliced (CFMS) initial data. The SBS junk is smaller in amplitude than the CFMS junk, with the junk's leading-order spectral modes typically being reduced by a factor of order two or more.
- May 28 2008 gr-qc arXiv:0805.4192v3There is a significant possibility that astrophysical black holes with nearly-extremal spins exist. Numerical simulations of such systems require suitable initial data. In this paper, we examine three methods of constructing binary-black-hole initial data, focusing on their ability to generate black holes with nearly-extremal spins: (i) Bowen-York initial data, including standard puncture data (based on conformal flatness and Bowen-York extrinsic curvature), (ii) standard quasi-equilibrium initial data (based on the extended-conformal-thin-sandwich equations, conformal flatness, and maximal slicing), and (iii) quasi-equilibrium data based on the superposition of Kerr-Schild metrics. We find that the two conformally-flat methods (i) and (ii) perform similarly, with spins up to about 0.99 obtainable at the initial time. However, in an evolution, we expect the spin to quickly relax to a significantly smaller value around 0.93 as the initial geometry relaxes. For quasi-equilibrium superposed Kerr-Schild (SKS) data [method (iii)], we construct initial data with \emphinitial spins as large as 0.9997. We evolve SKS data sets with spins of 0.93 and 0.97 and find that the spin drops by only a few parts in 10^4 during the initial relaxation; therefore, we expect that SKS initial data will allow evolutions of binary black holes with relaxed spins above 0.99. [Abstract abbreviated; full abstract also mentions several secondary results.]
- Mar 01 2007 gr-qc arXiv:gr-qc/0702146v1Extreme-mass-ratio inspirals (EMRIs) and intermediate-mass-ratio inspirals (IMRIs)--binaries in which a stellar-mass object spirals into a massive black hole or other massive, compact body--are important sources of gravitational waves for LISA and LIGO, respectively. Thorne has speculated that the waves from EMRIs and IMRIs encode, in principle, all the details of (i) the central body's spacetime geometry (metric), (ii) the tidal coupling (energy and angular momentum exchange) between the central body and orbiting object, and (iii) the evolving orbital elements. Fintan Ryan has given a first partial proof that this speculation is correct: Restricting himself to nearly circular, nearly equatorial orbits and ignoring tidal coupling, Ryan proved that the central body's metric is encoded in the waves. In this paper we generalize Ryan's theorem. Retaining Ryan's restriction to nearly circular and nearly equatorial orbits, and dropping the assumption of no tidal coupling, we prove that Thorne's conjecture is nearly fully correct: the waves encode not only the central body's metric but also the evolving orbital elements and (in a sense slightly different from Thorne's conjecture) the evolving tidal coupling.
- Feb 21 2007 gr-qc arXiv:gr-qc/0702106v2Binary black hole simulations starting from quasi-circular (i.e., zero radial velocity) initial data have orbits with small but non-zero orbital eccentricities. In this paper the quasi-equilibrium initial-data method is extended to allow non-zero radial velocities to be specified in binary black hole initial data. New low-eccentricity initial data are obtained by adjusting the orbital frequency and radial velocities to minimize the orbital eccentricity, and the resulting ($\sim 5$ orbit) evolutions are compared with those of quasi-circular initial data. Evolutions of the quasi-circular data clearly show eccentric orbits, with eccentricity that decays over time. The precise decay rate depends on the definition of eccentricity; if defined in terms of variations in the orbital frequency, the decay rate agrees well with the prediction of Peters (1964). The gravitational waveforms, which contain $\sim 8$ cycles in the dominant l=m=2 mode, are largely unaffected by the eccentricity of the quasi-circular initial data. The overlap between the dominant mode in the quasi-circular evolution and the same mode in the low-eccentricity evolution is about 0.99.
- We explore the prospects for Advanced LIGO to detect gravitational waves from neutron stars and stellar mass black holes spiraling into intermediate-mass ($M\sim 50 M_\odot$ to $350 M_\odot$) black holes. We estimate an event rate for such \emphintermediate-mass-ratio inspirals (IMRIs) of up to $\sim 10$--$30 \mathrm{yr}^{-1}$. Our numerical simulations show that if the central body is not a black hole but its metric is stationary, axisymmetric, reflection symmetric and asymptotically flat then the waves will likely be tri-periodic, as for a black hole. We report generalizations of a theorem due to Ryan (1995) which suggest that the evolutions of the waves' three fundamental frequencies and of the complex amplitudes of their spectral components encode (in principle) a full map of the central body's metric, full details of the energy and angular momentum exchange between the central body and the orbit, and the time-evolving orbital elements. We estimate that Advanced LIGO can measure or constrain deviations of the central body from a Kerr black hole with modest but interesting accuracy.
- Oct 11 2006 gr-qc arXiv:gr-qc/0610041v3In second-generation, ground-based interferometric gravitational-wave detectors such as Advanced LIGO, the dominant noise at frequencies $f \sim 40$ Hz to $\sim 200$ Hz is expected to be due to thermal fluctuations in the mirrors' substrates and coatings which induce random fluctuations in the shape of the mirror face. The laser-light beam averages over these fluctuations; the larger the beam and the flatter its light-power distribution, the better the averaging and the lower the resulting thermal noise. In semi-infinite mirrors, scaling laws for the influence of beam shape on the four dominant types of thermal noise (coating Brownian, coating thermoelastic, substrate Brownian, and substrate thermoelastic) have been suggested by various researchers and derived with varying degrees of rigour. Because these scaling laws are important tools for current research on optimizing the beam shape, it is important to firm up our understanding of them. This paper (1) gives a summary of the prior work and of gaps in the prior analyses, (2) gives a unified and rigorous derivation of all four scaling laws, and (3) explores, relying on work by J. Agresti, deviations from the scaling laws due to finite mirror size.
- Jun 01 2005 gr-qc arXiv:gr-qc/0505156v3We describe the possibility of using LISA's gravitational-wave observations to study, with high precision, the response of a massive central body to the tidal gravitational pull of an orbiting, compact, small-mass object. Motivated by this application, we use first-order perturbation theory to study tidal coupling for an idealized case: a massive Schwarzschild black hole, tidally perturbed by a much less massive moon in a distant, circular orbit. We investigate the details of how the tidal deformation of the hole gives rise to an induced quadrupole moment in the hole's external gravitational field at large radii. In the limit that the moon is static, we find, in Schwarzschild coordinates and Regge-Wheeler gauge, the surprising result that there is no induced quadrupole moment. We show that this conclusion is gauge dependent and that the static, induced quadrupole moment for a black hole is inherently ambiguous. For the orbiting moon and the central Schwarzschild hole, we find (in agreement with a recent result of Poisson) a time-varying induced quadrupole moment that is proportional to the time derivative of the moon's tidal field. As a partial analog of a result derived long ago by Hartle for a spinning hole and a stationary distant companion, we show that the orbiting moon's tidal field induces a tidal bulge on the hole's horizon, and that the rate of change of the horizon shape leads the perturbing tidal field at the horizon by a small angle.