results for au:Kikuchi_Y in:cond-mat

- The Lieb-Schultz-Mattis theorem dictates that a trivial symmetric insulator in lattice models is prohibited if lattice translation symmetry and $U(1)$ charge conservation are both preserved. In this paper, we generalize the Lieb-Schultz-Mattis theorem to systems with higher-form symmetries, which act on extended objects of dimension $n > 0$. The prototypical lattice system with higher-form symmetry is the pure abelian lattice gauge theory whose action consists only of the field strength. We first construct the higher-form generalization of the Lieb-Schultz-Mattis theorem with a proof. We then apply it to the $U(1)$ lattice gauge theory description of the quantum dimer model on bipartite lattices. Finally, using the continuum field theory description in the vicinity of the Rokhsar-Kivelson point of the quantum dimer model, we diagnose and compute the mixed 't Hooft anomaly corresponding to the higher-form Lieb-Schultz-Mattis theorem.
- Feb 01 2018 cond-mat.mes-hall arXiv:1801.10283v1We propose a new type of photoresponse induced in asymmetric Weyl semimetals in an external magnetic field. In usual symmetric Weyl semimetals in a magnetic field, the particles and holes produced by an incident light in different Weyl cones have opposite helicities and hence move in opposite directions, canceling each others's contributions to the photocurrent. However this cancelation does not occur if the Weyl semimetal possesses both a broken particle-hole symmetry and a broken spatial inversion symmetry. We call the resulting generation of photocurrent the helical magnetic effect because it is induced by the helicity imbalance in a magnetic field. We find that due to the large density of states in a magnetic field, the helical magnetic effect induces a remarkable large photocurrent for incident THz frequency light. This suggests a potential application of asymmetric Weyl semimetals for creating THz photosensors.
- We elucidate that the phase diagram of massless $N$-flavor QCD under $\mathbb{Z}_N$ flavor-twisted boundary condition (massless $\mathbb{Z}_N$-QCD) is constrained by an 't Hooft anomaly involving two-form gauge fields. As a consequence, massless $\mathbb{Z}_N$-QCD turns out to realize persistent order at any temperatures and quark chemical potentials, namely, the symmetric and gapped phase is strictly forbidden. This is the first result on the finite-$(T,\mu)$ phase diagram in QCD-type theories based on anomaly matching related to center and discrete axial symmetries.
- An 't Hooft anomaly is the obstruction for gauging symmetries, and it constrains possible low-energy behaviors of quantum field theories by excluding trivial infrared theories. Global inconsistency condition is recently proposed as a milder condition but is expected to play an almost same role by comparing high symmetry points in the theory space. In order to clarify the consequence coming from this new condition, we discuss several quantum mechanical models with topological angles and explicitly compute their energy spectra. It turns out that the global inconsistency can be saturated not only by the ground-state degeneracy at either of high symmetry points but also by the level crossing (phase transition) separating those high symmetry points.
- Mar 08 2017 cond-mat.mes-hall hep-ph arXiv:1703.02040v2We compute the chiral magnetic effect (CME) in multi-Weyl semimetals (multi-WSMs) based on the chiral kinetic theory. Multi-WSMs are WSMs with multiple monopole charges that have nonlinear and anisotropic dispersion relations near Weyl points, and we need to extend conventional computation of CME in WSMs with linear dispersion relations. Topological properties of CME in multi-WSMs are investigated in details for not only static magnetic fields but also time-dependent (dynamic) ones. We propose an experimental setup to measure the multiple monopole charge via the topological nature hidden in the dynamic CME.
- Oct 31 2016 cond-mat.mes-hall hep-th arXiv:1610.08986v2We describe a new type of the Chiral Magnetic Effect (CME) that should occur in Weyl semimetals with an asymmetry in the dispersion relations of the left- and right-handed chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source generates a non-vanishing chiral chemical potential. This is due to the different capacities of the left- and right-handed (LH and RH) chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation for a rotationally invariant Weyl semimetal with different Fermi velocities in the left and right chiral Weyl cones; we also consider the case of a Weyl semimetal with Weyl nodes at different energies. We argue that this effect is generically present in Weyl semimetals with different dispersion relations for LH and RH chiral Weyl cones, such as SrSi2 recently predicted as a Weyl semimetal with broken inversion and mirror symmetries, as long as the chiral relaxation time is much longer than the transport scattering time.
- We give a detailed derivation of the second-order (local) hydrodynamics for Boltzmann equation with an external force by using the renormalization group method. In this method, we solve the Boltzmann equation faithfully to extract the hydrodynamics without recourse to any ansatz. Our method leads to microscopic expressions of not only all the transport coefficients that are of the same form as those in Chapman-Enskog method but also those of the viscous relaxation times $\tau_i$ that admit physically natural interpretations. As an example, we apply our microscopic expressions to calculate the transport coefficients and the relaxation times of the cold fermionic atoms in a quantitative way, where the transition probability in the collision term is given explicitly in terms of the $s$-wave scattering length $a_s$. We thereby discuss the quantum statistical effects, temperature dependence, and scattering-length dependence of the first-order transport coefficients and the viscous relaxation times: It is shown that as the temperature is lowered, the transport coefficients and the relaxation times increase rapidly because Pauli principle acts effectively. On the other hand, as $a_s$ is increased, these quantities decrease and become vanishingly small at unitarity because of the strong coupling. The numerical calculation shows that the relation $\tau_\pi=\eta/P$, which is derived in the relaxation-time approximation and used in most of literature without almost any foundation, turns out to be satisfied quite well, while the similar relation for the relaxation time $\tau_J$ of the heat conductivity is satisfied only approximately with a considerable error.
- We discuss that a low-energy effective Lagrangian relying on SO(3) $\rightarrow$ SO(2) is applicable for a ferrimagnet as well as a ferromagnet and an antiferromagnet. The analysis of the particle states shows that there exist not only massless modes with the dispersion relations $\omega \propto |\bm{k}|,\, |\bm{k}|^2$, i.e., the so-called type-I and type-II Nambu-Goldstone modes, respectively, but also gapped modes with $\omega \propto m^2+|\bm{k}|^2$. We clarify how the coefficients of the terms with one time derivative and those with two time derivatives in the effective Lagrangian determine the order parameters specifying whether the system is in a ferromagnetic, antiferromagnetic or ferrimagnetic state; we stress that the gapped mode related to the spontaneous symmetry breaking appears only in the ferrimagnetic system and not in the ferromagnetic and antiferromagnetic systems. We also establish the power counting scheme and calculate the scattering amplitudes and thereby the scattering lengths between the two Nambu-Goldstone bosons. We show that the scattering length of the gapped mode is finite and proportional to the gap. This characteristic property of the gapped NG mode can be used to discriminate it from gapped excitations which originate in other mechanisms. Finally, we study the effects of the explicit symmetry breaking that are given by an external magnetic field and a single-ion anisotropy, and show that the external magnetic fields do not have any effects on the scattering amplitudes in all the spin systems as was known for the ferromagnet system. In contrast, the anisotropy does affect the scattering amplitudes, the phase shift, and the scattering length except for spin 1/2 systems. This result supports the possibility of the Efimov effect in spin systems discussed in previous studies.
- We give a quantitative analysis of the dynamical properties of fermionic cold atomic gases in normal phase, such as the shear viscosity, heat conductivity, and viscous relaxation times, using the novel microscopic expressions derived by the renormalization group (RG) method, where the Boltzmann equation is faithfully solved to extract the hydrodynamics without recourse to any ansatz. In particular, we examine the quantum statistical effects, temperature dependence, and scattering-length dependence of the transport coefficients and the viscous relaxation times. The numerical calculation shows that the relation $\tau_\pi=\eta/P$, which is derived in the relaxation-time approximation (RTA) and is used in most of the literature, turns out to be satisfied quite well, while the similar relation for the viscous relaxation time $\tau_J$ of the heat conductivity is satisfied only approximately with a considerable error.
- Jun 02 2009 cond-mat.supr-con arXiv:0906.0069v1The discoveries of superconductivity in heavily boron-doped diamond, silicon and silicon carbide renewed the interest in the ground states of charge-carrier doped wide-gap semiconductors. Recently, aluminium doping in silicon carbide successfully yielded a metallic phase from which at high aluminium concentrations superconductivity emerges. Here, we present a specific-heat study on superconducting aluminium-doped silicon carbide. We observe a clear jump anomaly at the superconducting transition temperature 1.5 K indicating that aluminium-doped silicon carbide is a bulk superconductor. An analysis of the jump anomaly suggests BCS-like phonon-mediated superconductivity in this system.
- Aug 13 2007 cond-mat.mtrl-sci arXiv:0708.1466v1Ever since the landmark discovery of single-walled carbon nanotubes (SWNTs) in 1993, they have been considered as ideal materials for any kind of application based on their outstanding properties (e.g. mechanical strength, thermal conductivity, ultra stability, etc.), and various techniques, including laser furnace technique, arc discharge technique, and recently, Catalytic Chemical Vapor Deposition (CCVD) technique, have been developed for the high-quality macroscopic generation. Recently Hata et al. realized the macroscopic production after great efforts of many scientists ; however, the growth mechanisms are still unclear and this incomplete knowledge prevents us from applying SWNTs to any fields. Here we can partially control the diameter distribution of SWNTs using Alcohol Catalytic CVD (ACCVD) technique and well combined catalysts. Their diameter is quite depend on the size of catalyst and their species, that is why this can be a technique to control SWNTs, and finally we propose the simple growth model.