results for au:Kapadia_S in:gr-qc

- Apr 09 2018 gr-qc astro-ph.HE arXiv:1804.02235v1The combined observation of gravitational and electromagnetic waves from the coalescence of two neutron stars marks the beginning of multi-messenger astronomy with gravitational waves (GWs). The development of accurate gravitational waveform models is a crucial prerequisite to extract information about the properties of the binary system that generated a detected GW signal. In binary neutron star systems (BNS), tidal effects also need to be incorporated in the modeling for an accurate waveform representation. Building on previous work [Phys.Rev.D96 121501], we explore the performance of inspiral-merger waveform models that are obtained by adding a numerical relativity (NR) based approximant for the tidal part of the phasing (NRTidal) to existing models for nonprecessing and precessing binary black hole systems (SEOBNRv4, PhenomD and PhenomPv2), as implemented in the LSC Algorithm Library Suite. The resulting BNS waveforms are compared and contrasted to target waveforms hybridizing NR waveforms, covering the last approx. 10 orbits up to merger and extending through the postmerger phase, with inspiral waveforms calculated from 30Hz obtained with TEOBResumS. The latter is a state-of-the-art effective-one-body waveform model that blends together tidal and spin effects. We probe that the combination of the PN-based self-spin terms and of the NRTidal description is necessary to obtain minimal mismatches (< 0.01) and phase differences (< 1 rad) with respect to the target waveforms. However, we also discuss possible improvements and drawbacks of the NRTidal approximant in its current form, since we find that it tends to overestimate the tidal interaction with respect to the TEOBResumS model during the inspiral.
- Mar 01 2018 gr-qc astro-ph.CO arXiv:1802.10194v2The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically-polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy-densities of tensor, vector, and scalar modes at 95% credibility to $\Omega^T_0 < 5.6 \times 10^{-8}$, $\Omega^V_0 < 6.4\times 10^{-8}$, and $\Omega^S_0 < 1.1\times 10^{-7}$ at a reference frequency $f_0 = 25$ Hz.
- Feb 15 2018 gr-qc arXiv:1802.05241v1We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0e-8, +1e-9] Hz/s. Potential signals could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h_0 is 4e-25 near 170 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 1.3e-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ~1.5e-25.
- Nov 16 2017 astro-ph.HE gr-qc arXiv:1711.05578v1On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through gravitational waves with electromagnetic observations. The source's luminosity distance is $340^{+140}_{-140}$ Mpc, corresponding to redshift $0.07^{+0.03}_{-0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity.
- Oct 26 2017 astro-ph.HE gr-qc arXiv:1710.09320v1The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the equation of state of nuclear matter. This could be either a black hole or a neutron star (NS), with the latter being either long-lived or too massive for stability implying delayed collapse to a black hole. Here, we present a search for gravitational waves from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short ($\lesssim1$ s) and intermediate-duration ($\lesssim 500$ s) signals, which includes gravitational-wave emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root-sum-square of the gravitational-wave strain emitted from 1--4 kHz is $h_{\rm rss}^{50\%}=2.1\times 10^{-22}$ Hz$^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is $h_{\rm rss}^{50\%}=8.4\times 10^{-22}$ Hz$^{-1/2}$ for a millisecond magnetar model, and $h_{\rm rss}^{50\%}=5.9\times 10^{-22}$ Hz$^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.
- Oct 17 2017 gr-qc arXiv:1710.05837v1The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.8_{-1.3}^{+2.7} \times 10^{-9}$ with $90\%$ confidence, compared with $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.1_{-0.7}^{+1.2} \times 10^{-9}$ from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
- Oct 09 2017 gr-qc astro-ph.IM arXiv:1710.02185v3The first observing run of Advanced LIGO spanned 4 months, from September 12, 2015 to January 19, 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce the sensitivity of a search. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. In this paper, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline, which is a python-based code package used to search for gravitational wave signals from compact binary coalescences, is used as a metric for improvement. GW150914 was a loud enough signal that removing noisy data did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by more than two orders of magnitude, from 1 in 770 years to less than 1 in 186000 years.
- Oct 09 2017 gr-qc astro-ph.HE arXiv:1710.02327v2Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, \it narrow-band analyses methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of eleven pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched: in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.
- Sep 28 2017 gr-qc astro-ph.HE arXiv:1709.09660v3On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm-rate of $\lesssim$ 1 in 27000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are $30.5_{-3.0}^{+5.7}$ Msun and $25.3_{-4.2}^{+2.8}$ Msun (at the 90% credible level). The luminosity distance of the source is $540_{-210}^{+130}~\mathrm{Mpc}$, corresponding to a redshift of $z=0.11_{-0.04}^{+0.03}$. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg$^2$ using only the two LIGO detectors to 60 deg$^2$ using all three detectors. For the first time, we can test the nature of gravitational wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.
- Sep 11 2017 astro-ph.IM gr-qc arXiv:1709.02421v1We describe a multivariate classifier for candidate events in a templated search for gravitational-wave (GW) inspiral signals from neutron-star--black-hole (NS-BH) binaries, in data from ground-based detectors where sensitivity is limited by non-Gaussian noise transients. The standard signal-to-noise ratio (SNR) and chi-squared test for inspiral searches use only properties of a single matched filter at the time of an event; instead, we propose a classifier using features derived from a bank of inspiral templates around the time of each event, and also from a search using approximate sine-Gaussian templates. The classifier thus extracts additional information from strain data to discriminate inspiral signals from noise transients. We evaluate a Random Forest classifier on a set of single-detector events obtained from realistic simulated advanced LIGO data, using simulated NS-BH signals added to the data. The new classifier detects a factor of 1.5 -- 2 more signals at low false positive rates as compared to the standard 're-weighted SNR' statistic, and does not require the chi-squared test to be computed. Conversely, if only the SNR and chi-squared values of single-detector events are available, Random Forest classification performs nearly identically to the re-weighted SNR.
- Aug 08 2016 gr-qc arXiv:1608.01940v4The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere,in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 Msun, still orbited each other as close as ~350 km apart, and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves.
- We report here the non-detection of gravitational waves from the merger of binary neutron star systems and neutron-star--black-hole systems during the first observing run of Advanced LIGO. In particular we searched for gravitational wave signals from binary neutron star systems with component masses $\in [1,3] M_{\odot}$ and component dimensionless spins $< 0.05$. We also searched for neutron-star--black-hole systems with the same neutron star parameters, black hole mass $\in [2,99] M_{\odot}$ and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems, and find that they could have detected the merger of binary neutron star systems with component mass distributions of $1.35\pm0.13 M_{\odot}$ at a volume-weighted average distance of $\sim$ 70Mpc, and for neutron-star--black-hole systems with neutron star masses of $1.4M_\odot$ and black hole masses of at least $5M_\odot$, a volume-weighted average distance of at least $\sim$ 110Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc$^{-3}$yr$^{-1}$ for binary-neutron star systems and less than 3,600 Gpc$^{-3}$yr$^{-1}$ for neutron-star--black-hole systems. We find that if no detection of neutron-star binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of $10^{+20}_{-7}$Gpc$^{-3}$yr$^{-1}$ short gamma ray bursts beamed towards the Earth and assuming that all short gamma-ray bursts have binary-neutron-star (neutron-star--black-hole) progenitors we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than ${2.3^{+1.7}_{-1.1}}^{\circ}$ (${4.3^{+3.1}_{-1.9}}^{\circ}$).
- Jul 11 2016 gr-qc astro-ph.HE arXiv:1607.02216v1We describe a directed search for continuous gravitational waves in data from the sixth LIGO science run. The target was the nearby globular cluster NGC 6544 at a distance of 2.7 kpc. The search covered a broad band of frequencies along with first and second frequency derivatives for a fixed sky position. The search coherently integrated data from the two LIGO interferometers over a time span of 9.2 days using the matched-filtering F-statistic. We found no gravitational-wave signals and set 95% confidence upper limits as stringent as 6.0 X 10^-25 on intrinsic strain and 8.5 X 10^-6 on fiducial ellipticity. These values beat the indirect limits from energy conservation for stars with characteristic spindown ages older than 300 years and are within the range of theoretical predictions for possible neutron-star ellipticities. An important feature of this search was use of a barycentric resampling algorithm which substantially reduced computational cost; this method will be used extensively in searches of Advanced LIGO and Virgo detector data.
- Jun 16 2016 gr-qc astro-ph.CO arXiv:1606.04856v3The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to $100 M_\odot$ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than $5\sigma$ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range $9-240 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.
- We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, accounting for all the spin-weighted quadrupolar modes, and separately accounting for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported in LVC_PE[1] (at 90% confidence), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Followup simulations performed using previously-estimated binary parameters most resemble the data. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz ∈[64 - 82M_⊙], mass ratio q = m2/m1 ∈[0.6,1], and effective aligned spin \chi_eff ∈[-0.3, 0.2], where \chi_eff = (S1/m1 + S2/m2) ⋅\hatL /M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and \chi_eff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole's redshifted mass is consistent with Mf,z between 64.0 - 73.5M_⊙and the final black hole's dimensionless spin parameter is consistent with af = 0.62 - 0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to LVC_PE[1].
- Jun 06 2016 gr-qc astro-ph.HE arXiv:1606.01210v1This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) on September 14, 2015 [1]. Reference presented parameter estimation [2] of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and a 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [2], and we quote updated component masses of $35^{+5}_{-3}\mathrm{M}_\odot$ and $30^{+3}_{-4}\mathrm{M}_\odot$ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate $0.65$ and a secondary spin estimate $0.75$ at 90% probability. Reference [2] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
- May 12 2016 gr-qc astro-ph.IM arXiv:1605.03233v2We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of $[-1.18, +1.00]\times 10^{-8}$ Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from the Initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude $h_0$ is ${9.7}\times 10^{-25}$ near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of ${5.5}\times 10^{-24}$. Both cases refer to all sky locations and entire range of frequency derivative values.
- Sep 23 2015 gr-qc arXiv:1509.06366v1In the adiabatic post-Newtonian (PN) approximation, the phase evolution of gravitational waves (GWs) from inspiralling compact binaries in quasicircular orbits is computed by equating the change in binding energy with the GW flux. This energy balance equation can be solved in different ways, which result in multiple approximants of the PN waveforms. Due to the poor convergence of the PN expansion, these approximants tend to differ from each other during the late inspiral. Which of these approximants should be chosen as templates for detection and parameter estimation of GWs from inspiraling compact binaries is not obvious. In this paper, we present estimates of the effective higher order (beyond the currently available 4PN and 3.5PN) non-spinning terms in the PN expansion of the binding energy and the GW flux that minimize the difference of multiple PN approximants (TaylorT1, TaylorT2, TaylorT4, TaylorF2) with effective one body waveforms calibrated to numerical relativity (EOBNR). We show that PN approximants constructed using the effective higher order terms show significantly better agreement (as compared to 3.5PN) with the inspiral part of the EOBNR. For non-spinning binaries with component masses $m_{1,2} \in [1.4 M_\odot, 15 M_\odot]$, most of the approximants have a match (faithfulness) of better than 99% with both EOBNR and each other.
- Dec 09 2013 gr-qc astro-ph.SR arXiv:1312.1912v2Since the work of Hartle in the 1970s, and the subsequent development of the the Membrane Paradigm approach to black hole physics it has been widely accepted that superradiant scattering of gravitational waves bears strong similarities with the phenomenon of ``tidal friction'' (well-known from Newtonian gravity) operating in binary systems of viscous material bodies. In this paper we revisit the superradiance-tidal friction analogy within the context of ultracompact relativistic bodies. We advocate that as long as these bodies have non-zero viscosity they should undergo tidal friction that can be construed as a kind of superradiant scattering from the point of view of the dynamics of an orbiting test-body. In addition we consider the presence of anisotropic matter, which is required for at least some ultracompact bodies, if they are to sustain a radius very close to the gravitational radius. We find that the tidal friction/superradiance output is enhanced with increasing anisotropy and that strongly anisotropic systems exhibit an unconventional response to tidal and centrifugal forces. Finally, we make contact with the artificial system comprising a black hole with its horizon replaced by a mirror (sometimes used as a proxy for ultracompact material bodies) and discuss superradiance and tidal friction in relation to it.
- Feb 06 2013 gr-qc arXiv:1302.1016v1This paper examines the possibility of floating or non-decaying orbits for extreme mass ratio binary black holes. In the adiabatic approximation, valid in the extreme mass ratio case, if the orbital flux lost due to gravitational radiation reaction is compensated for by the orbital flux gained from the spins of the black holes via superradiant scattering (or, equivalently, tidal acceleration) the orbital decay would be stalled, causing the binary to "float". We show that this flux balance is not, in practice, possible for extreme mass ratio binary black holes with circular equatorial orbits; furthermore, adding eccentricity and inclination to the orbits will not significantly change this null result, thus ruling out the possibility of floating orbits for extreme mass ratio binary black holes. We also argue that binaries consisting of material bodies dense and massive enough to generate gravitational waves detectable by any kind of gravitational wave detector are also unlikely to float. Using a multipolar analysis, we show that a non-Kerr spacetime which could produce a floating orbit (given the same amount of tidal acceleration as in the case of a Kerr black hole) would need to be rapidly rotating prolate spheroid, which would be an exotic object indeed.