results for au:Jimenez_J in:gr-qc

- We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.
- We study a large family of metric-affine theories with a projective symmetry, including non-minimally coupled matter fields which respect this invariance. The symmetry is straightforwardly realised by imposing that the connection only enters through the symmetric part of the Ricci tensor, even in the matter sector. We leave the connection completely free (including torsion) and obtain its general solution as the Levi-Civita connection of an auxiliary metric, showing that the torsion only appears as a projective mode. This result justifies the widely used condition of setting vanishing torsion in these theories as a simple gauge choice. We apply our results to some particular cases considered in the literature like the so-called Eddington-inspired-Born-Infeld theories among others. We finally discuss the possibility of imposing a gauge fixing where the connection is metric compatible and comment on the genuine character of the non-metricity in theories where the two metrics are not conformally related.
- General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.
- A large class of modified theories of gravity used as models for dark energy predict a propagation speed for gravitational waves which can differ from the speed of light. This difference of propagations speeds for photons and gravitons has an impact in the emission of gravitational waves by binary systems. Thus, we revisit the usual quadrupolar emission of binary system for an arbitrary propagation speed of gravitational waves and obtain the corresponding period decay formula. We then use timing data from the Hulse-Taylor binary pulsar and obtain that the speed of gravitational waves can only differ from the speed of light at the percentage level. This bound places tight constraints on dark energy models featuring an anomalous propagations speed for the gravitational waves.
- A non-abelian $SU(2)$ gauge field with a non-minimal Horndeski coupling to gravity gives rise to a de Sitter solution followed by a graceful exit to a radiation-dominated epoch. In this Horndeski Yang-Mills (HYM) theory we derive the second-order action for tensor perturbations on the homogeneous and isotropic quasi de Sitter background. We find that the presence of the Horndeski non-minimal coupling to the gauge field inevitably introduces ghost instabilities in the tensor sector during inflation. Moreover, we also find Laplacian instabilities for the tensor perturbations deep inside the Hubble radius during inflation. Thus, we conclude that the HYM theory does not provide a consistent inflationary framework due to the presence of ghosts and Laplacian instabilities.
- We extend previous results on healthy derivative self-interactions for a Proca field to the case of a set of massive vector fields. We obtain non-gauge invariant derivative self-interactions for the vector fields that maintain the appropriate number of propagating degrees of freedom. In view of the potential cosmological applications, we restrict to interactions with an internal rotational symmetry. We provide a systematical construction order by order in derivatives of the fields and making use of the antisymmetric Levi-Civita tensor. We then compare with the one single vector field case and show that the interactions can be broadly divided into two groups, namely the ones obtained from a direct extension of the generalized Proca terms and genuine multi-Proca interactions with no correspondence in the single Proca case. We also discuss the curved spacetime version of the interactions to include the necessary non-minimal couplings to gravity. Finally, we explore the cosmological applications and show that there are three different vector fields configurations giving rise to isotropic solutions. Two of them have already been considered in the literature and the third one, representing a combination of the first two, is new and offers unexplored cosmological scenarios.
- Jul 22 2016 gr-qc arXiv:1607.06389v2The existence of interactions between dark matter and dark energy has been widely studied, since they can fit well the observational data and may provide new physics through such an interaction. In this work we analyze these models and investigate their potential relation with future cosmological singularities. We find that every future singularity found in the literature can be mapped into a singularity of the interaction term, that we call $Q$-singularity, where the energy flow between the dark components diverges. Furthermore, this framework allows to identify a new type of future singularity induced by the divergence of the first derivative of the dark energy equation of state parameter.
- Jun 15 2016 gr-qc arXiv:1606.04361v1We consider an extension of Weyl geometry with the most general connection linearly determined by a vector field. We discuss some of the geometrical properties within this framework and then we construct gravitational theories leading to an interesting class of vector-tensor theories with cosmological applications.
- A class of vector-tensor theories arises naturally in the framework of quadratic gravity in spacetimes with linear vector distortion. Requiring the absence of ghosts for the vector field imposes an interesting condition on the allowed connections with vector distortion: the resulting one-parameter family of connections generalises the usual Weyl geometry with polar torsion. The cosmology of this class of theories is studied, focusing on isotropic solutions wherein the vector field is dominated by the temporal component. De Sitter attractors are found and inhomogeneous perturbations around such backgrounds are analysed. In particular, further constraints on the models are imposed by excluding pathologies in the scalar, vector and tensor fluctuations. Various exact background solutions are presented, describing a constant and an evolving dark energy, a bounce and a self-tuning de Sitter phase. However, the latter two scenarios are not viable under a closer scrutiny.
- Feb 22 2016 gr-qc astro-ph.CO arXiv:1602.06211v2In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behaviour of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time can not be smaller than about 1.2 times the age of the universe, what roughly speaking means about 2.8 Gyrs from the present time.
- In this work we revisit the construction of theories for a massive vector field with derivative self-interactions such that only the 3 desired polarizations corresponding to a Proca field propagate. We start from the decoupling limit by constructing healthy interactions containing second derivatives of the Stueckelberg field with itself and also with the transverse modes. The resulting interactions can then be straightforwardly generalized beyond the decoupling limit. We then proceed to a systematic construction of the interactions by using the Levi-Civita tensors. Both approaches lead to a finite family of allowed derivative self-interactions for the Proca field. This construction allows us to show that some higher order terms recently introduced as new interactions trivialize in 4 dimensions by virtue of the Cayley-Hamilton theorem. Moreover, we discuss how the resulting derivative interactions can be written in a compact determinantal form, which can also be regarded as a generalization of the Born-Infeld lagrangian for electromagnetism. Finally, we generalize our results for a curved background and give the necessary non-minimal couplings guaranteeing that no additional polarizations propagate even in the presence of gravity.
- Despite its continued observational successes, there is a persistent (and growing) interest in extending cosmology beyond the standard model, $\Lambda$CDM. This is motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm. In this paper, we summarize the current status of $\Lambda$CDM as a physical theory, and review investigations into possible alternatives along a number of different lines, with a particular focus on highlighting the most promising directions. While the fundamental problems are proving reluctant to yield, the study of alternative cosmologies has led to considerable progress, with much more to come if hopes about forthcoming high-precision observations and new theoretical ideas are fulfilled.
- Spacetime with general linear vector distortion is introduced. Thus, the torsion and the nonmetricity of the affine connection are assumed to be proportional to a vector field (and not its derivatives). The resulting two-parameter family of non-Riemannian geometries generalises the conformal Weyl geometry and some other interesting special cases. Taking into account the leading order quadratic curvature correction to the Einstein-Hilbert action results uniquely in the one-parameter extension of the Starobinsky inflation known as the alpha-attractor. The most general quadratic curvature action introduces, in addition to the canonical vector kinetic term, novel ghost-free vector-tensor interactions.
- Sep 04 2015 gr-qc astro-ph.CO arXiv:1509.01188v2In the framework of Born-Infeld inspired gravity theories, which deviates from General Relativity (GR) in the high curvature regime, we discuss the viability of Cosmic Inflation without scalar fields. For energy densities higher than the new mass scale of the theory, a gravitating dust component is shown to generically induce an accelerated expansion of the Universe. Within such a simple scenario, inflation gracefully exits when the GR regime is recovered, but the Universe would remain matter dominated. In order to implement a reheating era after inflation, we then consider inflation to be driven by a mixture of unstable dust species decaying into radiation. Because the speed of sound gravitates within the Born-Infeld model under consideration, our scenario ends up being predictive on various open questions of the inflationary paradigm. The total number of e-folds of acceleration is given by the lifetime of the unstable dust components and is related to the duration of reheating. As a result, inflation does not last much longer than the number of e-folds of deceleration allowing a small spatial curvature and large scale deviations to isotropy to be observable today. Energy densities are self-regulated as inflation can only start for a total energy density less than a threshold value, again related to the species' lifetime. Above this threshold, the Universe may bounce thereby avoiding a singularity. Another distinctive feature is that the accelerated expansion is of the superinflationary kind, namely the first Hubble flow function is negative. We show however that the tensor modes are never excited and the tensor-to-scalar ratio is always vanishing, independently of the energy scale of inflation.
- By using observations of the Hulse-Taylor pulsar we constrain the gravitational wave (GW) speed to the level of $10^{-2}$. We apply this result to scalar-tensor theories that generalize Galileon 4 and 5 models, which display anomalous propagation speed and coupling to matter for GWs. We argue that this effect survives conventional screening due to the persistence of a scalar field gradient inside virialized overdensities, which effectively "pierces" the Vainshtein screening. In specific branches of solutions, our result allows to directly constrain the cosmological couplings in the effective field theory of dark energy formalism.
- We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the space-time metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
- We discuss the consistency of a recently proposed class of theories described by an arbitrary function of the Ricci scalar, the trace of the energy-momentum tensor and the contraction of the Ricci tensor with the energy-momentum tensor. We briefly discuss the limitations of including the energy-momentum tensor in the action, as it is a non fundamental quantity, but a quantity that should be derived from the action. The fact that theories containing non-linear contractions of the Ricci tensor usually leads to the presence of pathologies associated with higher-order equations of motion will be shown to constrain the stability of this class of theories. We provide a general framework and show that the conformal mode for these theories generally has higher-order equations of motion and that non-minimal couplings to the matter fields usually lead to higher-order equations of motion. In order to illustrate such limitations we explicitly study the cases of a canonical scalar field, a K-essence field and a massive vector field. Whereas for the scalar field cases it is possible to find healthy theories, for the vector field case the presence of instabilities is unavoidable.
- We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a \it minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.
- Feb 11 2014 gr-qc arXiv:1402.1846v1In this paper we consider an extended Gauss-Bonnet gravity theory in arbitrary dimensions and in a space provided with a Weyl connection, which is torsionless but not metric-compatible, the non-metricity tensor being determined by a vector field. The considered action consists of the usual Einstein-Hilbert action plus all the terms quadratic in the curvature that reduce to the usual Gauss-Bonnet term for vanishing Weyl connection, i.e., when only the Levi-Civita part of the connection is present. We expand the action in terms of Riemannian quantities and obtain vector-tensor theories. We find that all the free parameters only appear in the kinetic term of the vector field so that two branches are possible: one with a propagating vector field and another one where the vector field does not propagate. We focus on the propagating case. We find that in 4 dimensions, the theory is equivalent to Einstein's gravity plus a Proca field. This field is naturally decoupled from matter so that it represents a natural candidate for dark matter. Also in d=4, we discuss a non-trivial cubic term in the curvature that can be constructed without spoiling the second order nature of the field equations because it leads to the vector-tensor Horndeski interaction. In arbitrary dimensions, the theory becomes more involved. We show that, even though the vector field presents kinetic interactions which do not have U(1) symmetry, there are no additional propagating degrees of freedom with respect to the usual massive case. Interestingly, we show that this relies on the fact that the corresponding Stueckelberg field belongs to a specific class within the general Horndeski theories. Finally, since Weyl geometries are the natural ground to build scale invariant theories, we apply the usual Weyl-gauging in order to make the Horndeski action locally scale invariant and discuss on new terms that can be added.
- Dec 20 2013 astro-ph.CO gr-qc arXiv:1312.5680v2One possible explanation for the present observed acceleration of the Universe is the breakdown of homogeneity and isotropy due to the formation of non-linear structures. How inhomogeneities affect the averaged cosmological expansion rate and lead to late-time acceleration is generally considered to be due to some backreaction mechanism. General Relativity together with pressure-free matter have until recently been considered as the sole ingredients for averaged calculations. In this communication we focus our attention on more general scenarios, including imperfect fluids as well as alternative theories of gravity, and apply an averaging procedure to them in order to determine possible backreaction effects. For illustrative purposes, we present our results for dark energy models, quintessence and Brans-Dicke theories. We also provide a discussion about the limitations of frame choices in the averaging procedure.
- We study the Horndeski vector-tensor theory that leads to second order equations of motion and contains a non-minimally coupled abelian gauge vector field. This theory is remarkably simple and consists of only 2 terms for the vector field, namely: the standard Maxwell kinetic term and a coupling to the dual Riemann tensor. Furthermore, the vector sector respects the U(1) gauge symmetry and the theory contains only one free parameter, M^2, that controls the strength of the non-minimal coupling. We explore the theory in a de Sitter spacetime and study the presence of instabilities and show that it corresponds to an attractor solution in the presence of the vector field. We also investigate the cosmological evolution and stability of perturbations in a general FLRW spacetime. We find that a sufficient condition for the absence of ghosts is M^2>0. Moreover, we study further constraints coming from imposing the absence of Laplacian instabilities. Finally, we study the stability of the theory in static and spherically symmetric backgrounds (in particular, Schwarzschild and Reissner-Nordström-de Sitter). We find that the theory, quite generally, do have ghosts or Laplacian instabilities in regions of spacetime where the non-minimal interaction dominates over the Maxwell term. We also calculate the propagation speed in these spacetimes and show that superluminality is a quite generic phenomenon in this theory.
- We prove an exact relation between the tensor and the scalar primordial power spectra generated during inflation. Such a mapping considerably simplifies the derivation of any power spectra as they can be obtained from the study of the tensor modes only, which are much easier to solve. As an illustration, starting from the second order slow-roll tensor power spectrum, we derive in a few lines the next-to-next-to-leading order power spectrum of the comoving curvature perturbation in generalized single field inflation with a varying speed of sound.
- Dec 11 2012 astro-ph.CO gr-qc arXiv:1212.1923v2A screening mechanism for conformal vector-tensor modifications of general relativity is proposed. The conformal factor depends on the norm of the vector field and makes the field to vanish in high dense regions, whereas drives it to a non-null value in low density environments. Such process occurs due to a spontaneous symmetry breaking mechanism and gives rise to both the screening of fifth forces as well as Lorentz violations. The cosmology and local constraints are also computed.
- Oct 10 2012 gr-qc arXiv:1210.2650v1We calculate the Komar energy $E$ for a charged black hole inspired by noncommutative geometry and identify the total mass ($M_{0}$) by considering the asymptotic limit. We also found the generalized Smarr formula, which shows a deformation from the well known relation $M_{0}-\frac{Q_{0}^{2}}{r}=2ST$ depending on the noncommutative scale length $\ell$ .
- May 09 2012 astro-ph.CO gr-qc arXiv:1205.1695v2We present the results of a series of cosmological $N$-body simulations of a Vector Dark Energy (VDE) model, performed using a suitably modified version of the publicly available \textttGADGET-2 code. The setups of our simulations were calibrated pursuing a twofold aim: 1) to analyze the large scale distribution of massive objects and 2) to determine the properties of halo structure in this different ramework.We observe that structure formation is enhanced in VDE, since the mass function at high redshift is boosted up to a factor of ten with respect to \LCDM, possibly alleviating tensions with the observations of massive clusters at high redshifts and early reionization epoch. Significant differences can also be found for the value of the growth factor, that in VDE shows a completely different behaviour, and in the distribution of voids, which in this cosmology are on average smaller and less abundant. We further studied the structure of dark matter haloes more massive than $5\times10^{13}$\hMsun, finding that no substantial difference emerges when comparing spin parameter, shape, triaxiality and profiles of structures evolved under different cosmological pictures. Nevertheless, minor differences can be found in the concentration-mass relation and the two point correlation function; both showing different amplitudes and steeper slopes.Using an additional series of simulations of a \LCDM scenario with the same $\Omega_M$ and $\sigma_8$ used in the VDE cosmology, we have been able to establish whether the modifications induced in the new cosmological picture were due to the particular nature of the dynamical dark energy or a straightforward consequence of the cosmological parameters.
- The bimetric variational principle is a subtle reinterpretation of general relativity that assumes the spacetime connection to be generated by an independent metric. Unlike the so called Palatini formalism that promotes the connection into a fundamental field, the new variational principle results in a physically distinct theory since the potential for the connection carries new degrees of freedom. The connection-generating metric naturally allows also an antisymmetric component. This sets torsion propagating! It is also shown here that while in the most straightforward generalization of the Einstein-Hilbert action the nonmetric degrees of freedom become ghosts, there exist very simple actions which give rise to viable theories at the linearised level when subjected to the bimetric variational principle. However, the non linear interactions might bring unpleasant features like the Boulware-Deser ghost. This remains to be explored since this new type of bimetric theories does not, in principle, lie in the class of usual bimetric theories where non-linear interactions inevitably come in with new ghost-like degrees of freedom.
- Despite the success of Maxwell's electromagnetism in the description of the electromagnetic interactions on small scales, we know very little about the behaviour of electromagnetic fields on cosmological distances. Thus, it has been suggested recently that the problems of dark energy and the origin of cosmic magnetic fields could be pointing to a modification of Maxwell's theory on large scales. Here, we review such a proposal in which the scalar state which is usually eliminated be means of the Lorenz condition is allowed to propagate. On super-Hubble scales, the new mode is essentially given by the temporal component of the electromagnetic potential and contributes as an effective cosmological constant to the energy-momentum tensor. The new state can be generated from quantum fluctuations during inflation and it is shown that the predicted value for the cosmological constant agrees with observations provided inflation took place at the electroweak scale. We also consider more general theories including non-minimal couplings to the space-time curvature in the presence of the temporal electromagnetic background. We show that both in the minimal and non-minimal cases, the modified Maxwell's equations include new effective current terms which can generate magnetic fields from sub-galactic scales up to the present Hubble horizon. The corresponding amplitudes could be enough to seed a galactic dynamo or even to account for observations just by collapse and differential rotation in the protogalactic cloud.
- In this work we consider quantum electromagnetic fields in an expanding universe. We start by reviewing the difficulties found when trying to impose the Lorenz condition in a time-dependent geometry. Motivated by this fact, we explore the possibility of extending the electromagnetic theory by allowing the scalar state which is usually eliminated by means of the Lorenz condition to propagate, preserving at the same time the dynamics of ordinary transverse photons. We show that the new state cannot be generated by charged currents, but it breaks conformal invariance and can be excited gravitationally. In fact, primordial quantum fluctuations produced during inflation can give rise to super-Hubble temporal electromagnetic modes whose energy density behaves as a cosmological constant. The value of the effective cosmological constant is shown to agree with observations provided inflation took place at the electroweak scale. The theory is compatible with all the local gravity tests and is free from classical or quantum instabilities. Thus we see that, not only the true nature of dark energy can be established without resorting to new physics, but also the value of the cosmological constant finds a natural explanation in the context of standard inflationary cosmology. On sub-Hubble scales, the new state generates an effective charge density which, due to the high electric conductivity of the cosmic plasma after inflation, gives rise to both vorticity and magnetic fields. Present upper limits on vorticity coming from CMB anisotropies are translated into lower limits on the present value of cosmic magnetic fields. We find that magnetic fields $B_{\lambda}> 10^{-12}$ G can be typically generated with coherence lengths ranging from sub-galactic scales up to the present Hubble radius.
- In this work we consider the most general electromagnetic theory in curved space-time leading to linear second order differential equations, including non-minimal couplings to the space-time curvature. We assume the presence of a temporal electromagnetic background whose energy density plays the role of dark energy, as has been recently suggested. Imposing the consistency of the theory in the weak-field limit, we show that it reduces to standard electromagnetism in the presence of an effective electromagnetic current which is generated by the momentum density of the matter/energy distribution, even for neutral sources. This implies that in the presence of dark energy, the motion of large-scale structures generates magnetic fields. Estimates of the present amplitude of the generated seed fields for typical spiral galaxies could reach $10^{-9}$ G without any amplification. In the case of compact rotating objects, the theory predicts their magnetic moments to be related to their angular momenta in the way suggested by the so called Schuster-Blackett conjecture.
- In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Due to the high electric conductivity of the cosmic plasma after inflation, the electric charge density generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields $B_{\lambda}> 10^{-12}$ G are typically generated with coherence lengths ranging from sub-galactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.
- Jul 22 2009 physics.gen-ph gr-qc arXiv:0907.3648v2It has been recently proposed that the presence of a temporal electromagnetic field on cosmological scales could explain the phase of accelerated expansion that the universe is currently undergoing. The field contributes as a cosmological constant and therefore, the homogeneous cosmology produced by such a model is exactly the same as that of $\Lambda$CDM. However, unlike a cosmological constant term, electromagnetic fields can acquire perturbations which in principle could affect CMB anisotropies and structure formation. In this work, we study the evolution of inhomogeneous scalar perturbations in this model. We show that provided the initial electromagnetic fluctuations generated during inflation are small, the model is perfectly compatible with both CMB and large scale structure observations at the same level of accuracy as $\Lambda$CDM.
- May 18 2009 physics.gen-ph gr-qc arXiv:0905.2589v1Is there an absolute cosmic electric potential?. The recent discovery of the accelerated expansion of the universe could be indicating that this is certainly the case. In this essay we show that the consistency of the covariant and gauge invariant theory of electromagnetism is truly questionable when considered on cosmological scales. Out of the four components of the electromagnetic field, Maxwell's theory only contains two physical degrees of freedom. However, in the presence of gravity, one of the "unphysical" states cannot be consistently eliminated, thus becoming real. This third polarization state is completely decoupled from charged matter, but can be excited gravitationally thus breaking gauge invariance. On large scales the new state can be seen as a homogeneous cosmic electric potential, whose energy density behaves as a cosmological constant.
- We present a detailed study of the cosmological evolution in general vector-tensor theories of gravity without potential terms. We consider the evolution of the vector field throughout the expansion history of the universe and carry out a classification of models according to the behavior of the vector field in each cosmological epoch. We also analyze the case in which the universe is dominated by the vector field, performing a complete analysis of the system phase map and identifying those attracting solutions which give rise to accelerated expansion. Moreover, we consider the evolution in a universe filled with a pressureless fluid in addition to the vector field and study the existence of attractors in which we can have a transition from matter-domination to vector-domination with accelerated expansion so that the vector field may play the role of dark energy. We find that the existence of solutions with late-time accelerated expansion is a generic prediction of vector-tensor theories and that such solutions typically lead to the presence of future singularities. Finally, limits from local gravity tests are used to get constraints on the value of the vector field at small (Solar System) scales.
- We consider electromagnetic field quantization in an expanding universe. We find that the covariant (Gupta-Bleuler) method exhibits certain difficulties when trying to impose the quantum Lorenz condition on cosmological scales. We thus explore the possibility of consistently quantizing without imposing such a condition. In this case there are three physical states, which are the two transverse polarizations of the massless photon and a new massless scalar mode coming from the temporal and longitudinal components of the electromagnetic field. An explicit example in de Sitter space-time shows that it is still possible to eliminate the negative norm state and to ensure the positivity of the energy in this theory. The new state is decoupled from the conserved electromagnetic currents, but is non-conformally coupled to gravity and therefore can be excited from vacuum fluctuations by the expanding background. The cosmological evolution ensures that the new state modifies Maxwell's equations in a totally negligible way on sub-Hubble scales. However, on cosmological scales it can give rise to a non-negligible energy density which could explain in a natural way the present phase of accelerated expansion of the universe.
- We show that vector theories on cosmological scales are excellent candidates for dark energy. We consider two different examples, both are theories with no dimensional parameters nor potential terms, with natural initial conditions in the early universe and the same number of free parameters as LCDM. The first one exhibits scaling behaviour during radiation and a strong phantom phase today, ending in a "big-freeze" singularity. This model provides the best fit to date for the SNIa Gold dataset. The second theory we consider is standard electromagnetism. We show that a temporal electromagnetic field on cosmological scales generates an effective cosmological constant and that primordial electromagnetic quantum fluctuations produced during electroweak scale inflation could naturally explain, not only the presence of this field, but also the measured value of the dark energy density. The theory is compatible with all the local gravity tests, and is free from classical or quantum instabilities. Thus, not only the true nature of dark energy could be established without resorting to new physics, but also the value of the cosmological constant would find a natural explanation in the context of standard inflationary cosmology.
- Large-scale matter bulk flows with respect to the cosmic microwave background have very recently been detected on scales 100 Mpc/h and 300 Mpc/h by using two different techniques showing an excellent agreement in the motion direction. However, the unexpectedly large measured amplitudes are difficult to understand within the context of standard LCDM cosmology. In this work we show that the existence of such a flow could be signaling the presence of moving dark energy at the time when photons decoupled from matter. We also comment on the relation between the direction of the CMB dipole and the preferred axis observed in the quadrupole in this scenario.
- We present a detailed study of the viability of general vector-tensor theories of gravity in the presence of an arbitrary temporal background vector field. We find that there are six different classes of theories which are indistinguishable from General Relativity by means of local gravity experiments. We study the propagation speeds of scalar, vector and tensor perturbations and obtain the conditions for classical stability of those models. We compute the energy density of the different modes and find the conditions for the absence of ghosts in the quantum theory. We conclude that the only theories which can pass all the viability conditions for arbitrary values of the background vector field are not only those of the pure Maxwell type, but also Maxwell theories supplemented with a (Lorentz type) gauge fixing term.
- We show that the presence of a temporal electromagnetic field on cosmological scales generates an effective cosmological constant which can account for the accelerated expansion of the universe. Primordial electromagnetic quantum fluctuations produced during electroweak scale inflation could naturally explain the presence of this field and also the measured value of the dark energy density. The behavior of the electromagnetic field on cosmological scales is found to differ from the well studied short-distance behavior and, in fact, the presence of a non-vanishing cosmological constant could be signalling the breakdown of gauge invariance on cosmological scales. The theory is compatible with all the local gravity tests, and is free from classical or quantum instabilities. Thus we see that, not only the true nature of dark energy can be established without resorting to new physics, but also the value of the cosmological constant finds a natural explanation in the context of standard inflationary cosmology. This mechanism could be discriminated from a true cosmological constant by upcoming observations of CMB anisotropies and large scale structure.
- In this work we show that the presence of a vector field on cosmological scales could explain the present phase of accelerated expansion of the universe. The proposed theory contains no dimensional parameters nor potential terms and does not require unnatural initial conditions in the early universe, thus avoiding the so called cosmic coincidence problem. In addition, it fits the data from high-redshift supernovae with excellent precision, making definite predictions for cosmological parameters. Upcoming observations will be able to clearly discriminate this model from standard cosmology with cosmological constant.
- We study the consequences of a homogeneous dark energy fluid having a non-vanishing velocity with respect to the matter and radiation large-scale rest frames. We consider homogeneous anisotropic cosmological models with four fluids (baryons, radiation, dark matter and dark energy) whose velocities can differ from each other. Performing a perturbative calculation up to second order in the velocities, we obtain the contribution of the anisotropies generated by the fluids motion to the CMB quadrupole and compare with observations. We also consider the exact problem for arbitrary velocities and solve the corresponding equations numerically for different dark energy models. We find that models whose equation of state is initially stiffer than radiation, as for instance some tracking models, are unstable against velocity perturbations, thus spoiling the late-time predictions for the energy densities. In the case of scaling models, the contributions to the quadrupole can be non-negligible for a wide range of initial conditions. We also consider fluids moving at the speed of light (null fluids) with positive energy and show that, without assuming any particular equation of state, they generically act as a cosmological constant at late times. We find the parameter region for which the models considered could be compatible with the measured (low) quadrupole.