results for au:Ijjas_A in:astro-ph

- Mar 07 2018 astro-ph.CO gr-qc arXiv:1803.01961v1We introduce the "wedge diagram," an intuitive way to illustrate how cosmological models with a classical (non-singular) bounce generically resolve fundamental problems in cosmology. These include the well-known horizon, flatness, and inhomogeneity problems; the small tensor-to-scalar ratio observed in the cosmic microwave background; the low entropy at the beginning of a hot, expanding phase; and the avoidance of quantum runaway. The same diagrammatic approach can be used to compare with other cosmological scenarios.
- In this paper, we show how the proper choice of gauge is critical in analyzing the stability of non-singular cosmological bounce solutions based on Horndeski theories. We show that it is possible to construct non-singular cosmological bounce solutions with classically stable behavior for all modes with wavelengths above the Planck scale where: (a) the solution involves a stage of null-energy condition violation during which gravity is described by a modification of Einstein's general relativity; and (b) the solution reduces to Einstein gravity both before and after the null-energy condition violating stage. Similar considerations apply to galilean genesis scenarios.
- Cyclic models of the universe have the advantage of avoiding initial conditions problems related to postulating any sort of beginning in time. To date, the only known viable examples of cyclic models have been ekpyrotic. In this paper, we show that the recently proposed anamorphic scenario can also be made cyclic. The key to the cyclic completion is a classically stable, non-singular bounce. Remarkably, even though the bounce construction was originally developed to connect a period of contraction with a period of expansion both described by Einstein gravity, we show here that it can naturally be modified to connect an ordinary contracting phase described by Einstein gravity with a phase of anamorphic smoothing. The paper will present the basic principles and steps in constructing cyclic anamorphic models.
- We recently showed how it is possible to use a cubic Galileon action to construct classical cosmological solutions that enter a contracting null energy condition (NEC) violating phase, bounce at finite values of the scale factor and exit into an expanding NEC-satisfying phase without encountering any singularities or pathologies. A drawback of these examples is that singular behavior is encountered at some time either just before or just after the NEC-violating phase. In this Letter, we show that it is possible to circumvent this problem by extending our method to actions that include the next order ${\cal L}_4$ Galileon interaction. Using this approach, we construct non-singular classical bouncing cosmological solutions that are non-pathological for all times.
- One of the fundamental questions of theoretical cosmology is whether the universe can undergo a non-singular bounce, i.e., smoothly transit from a period of contraction to a period of expansion through violation of the null energy condition (NEC) at energies well below the Planck scale and at finite values of the scale factor such that the entire evolution remains classical. A common claim has been that a non-singular bounce either leads to ghost or gradient instabilities or a cosmological singularity. In this letter, we examine cubic Galileon theories and present a procedure for explicitly constructing examples of a non-singular cosmological bounce without encountering any pathologies and maintaining a sub-luminal sound speed for co-moving curvature modes throughout the NEC violating phase. We also discuss the relation between our procedure and earlier work.
- May 02 2016 gr-qc astro-ph.CO arXiv:1604.08586v1In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space-times always decreases while in contracting space-times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this paper, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show that mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein-Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. We also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.
- Dec 31 2015 astro-ph.CO arXiv:1512.09010v1The results from Planck2015, when combined with earlier observations from WMAP, ACT, SPT and other experiments, were the first observations to disfavor the "classic" inflationary paradigm. To satisfy the observational constraints, inflationary theorists have been forced to consider plateau-like inflaton potentials that introduce more parameters and more fine-tuning, problematic initial conditions, multiverse-unpredictability issues, and a new 'unlikeliness problem.' Some propose turning instead to a "postmodern" inflationary paradigm in which the cosmological properties in our observable universe are only locally valid and set randomly, with completely different properties (and perhaps even different physical laws) existing in most regions outside our horizon. By contrast, the new results are consistent with the simplest versions of ekpyrotic cyclic models in which the universe is smoothed and flattened during a period of slow contraction followed by a bounce, and another promising bouncing theory, anamorphic cosmology, has been proposed that can produce distinctive predictions.
- Jul 15 2015 astro-ph.CO arXiv:1507.03875v2We introduce "anamorphic" cosmology, an approach for explaining the smoothness and flatness of the universe on large scales and the generation of a nearly scale-invariant spectrum of adiabatic density perturbations. The defining feature is a smoothing phase that acts like a contracting universe based on some Weyl frame-invariant criteria and an expanding universe based on other frame-invariant criteria. An advantage of the contracting aspects is that it is possible to avoid the multiverse and measure problems that arise in inflationary models. Unlike ekpyrotic models, anamorphic models can be constructed using only a single field and can generate a nearly scale-invariant spectrum of tensor perturbations. Anamorphic models also differ from pre-big bang and matter bounce models that do not explain the smoothness. We present some examples of cosmological models that incorporate an anamorphic smoothing phase.
- Jun 03 2015 astro-ph.CO gr-qc arXiv:1506.01011v1Ekpyrotic bouncing cosmologies have been proposed as alternatives to inflation. In these scenarios, the universe is smoothed and flattened during a period of slow contraction preceding the bounce while quantum fluctuations generate nearly scale-invariant super-horizon perturbations that seed structure in the post-bounce universe. An analysis by Tolley and Wesley (2007) showed that, for a wide range of ekpyrotic models, generating a scale-invariant spectrum of adiabatic or entropic fluctuations is only possible if the cosmological background is unstable, in which case the scenario is highly sensitive to initial conditions. In this paper, we analyze an important counterexample: a simple action that generates a Gaussian, scale-invariant spectrum of entropic perturbations during ekpyrotic contraction without requiring fine-tuned initial conditions. Based on this example, we discuss some generalizations.
- Apr 07 2014 astro-ph.CO hep-th arXiv:1404.1265v2We explore a new type of entropic mechanism for generating density perturbations in a contracting phase in which there are two scalar fields, but only one has a steep negative potential. This first field dominates the energy density and is the source of the ekpyrotic equation of state. The second field has a negligible potential, but its kinetic energy density is coupled to the first field with a non-linear sigma-model type interaction. We show that for any ekpyrotic equation of state it is possible to choose the potential and the kinetic coupling such that exactly scale-invariant (or nearly scale-invariant) entropy perturbations are produced. The corresponding background solutions are stable, and the bispectrum of the entropy perturbations vanishes as no non-Gaussianity is produced during the ekpyrotic phase. Hence, the only contribution to non-Gaussianity comes from the non-linearity of the conversion process during which entropic perturbations are turned into adiabatic ones, resulting in a local non-Gaussianity parameter $f_{NL} \sim 5$.
- Feb 28 2014 astro-ph.CO hep-th arXiv:1402.6980v2Classic inflation, the theory described in textbooks, is based on the idea that, beginning from typical initial conditions and assuming a simple inflaton potential with a minimum of fine-tuning, inflation can create exponentially large volumes of space that are generically homogeneous, isotropic and flat, with nearly scale-invariant spectra of density and gravitational wave fluctuations that are adiabatic, Gaussian and have generic predictable properties. In a recent paper, we showed that, in addition to having certain conceptual problems known for decades, classic inflation is for the first time also disfavored by data, specifically the most recent data from WMAP, ACT and Planck2013. Guth, Kaiser and Nomura and Linde have each recently published critiques of our paper, but, as made clear here, we all agree about one thing: the problematic state of classic inflation. Instead, they describe an alternative inflationary paradigm that revises the assumptions and goals of inflation, and perhaps of science generally.
- Sep 18 2013 astro-ph.CO hep-th arXiv:1309.4480v1The large-scale structure of the universe suggests that the physics underlying its early evolution is scale-free. This was the historic motivation for the Harrison-Zel'dovich-Peebles spectrum and for inflation. Based on a hydrodynamical approach, we identify scale-free forms for the background equation-of-state for both inflationary and cyclic scenarios and use these forms to derive predictions for the spectral tilt and tensor-to-scalar ratio of primordial density perturbations. For the case of inflation, we find three classes of scale-free models with distinct predictions. Including all classes, we show that scale-free inflation predicts tensor-to-scalar ratio $r > 10^{-4}$. We show that the observationally favored class is theoretically disfavored because it suffers from an initial conditions problem and the hydrodynamical form of an unlikeliness problem similar to that identified recently for certain inflaton potentials. We contrast these results with those for scale-free cyclic models.
- Recent results from the Planck satellite combined with earlier observations from WMAP, ACT, SPT and other experiments eliminate a wide spectrum of more complex inflationary models and favor models with a single scalar field, as reported by the Planck Collaboration. More important, though, is that all the simplest inflaton models are disfavored statistically relative to those with plateau-like potentials. We discuss how a restriction to plateau-like models has three independent serious drawbacks: it exacerbates both the initial conditions problem and the multiverse-unpredictability problem and it creates a new difficulty that we call the inflationary "unlikeliness problem." Finally, we comment on problems reconciling inflation with a standard model Higgs, as suggested by recent LHC results. In sum, we find that recent experimental data disfavors all the best-motivated inflationary scenarios and introduces new, serious difficulties that cut to the core of the inflationary paradigm. Forthcoming searches for B-modes, non-Gaussianity and new particles should be decisive.