results for au:Huang_Q in:cs

- Covert communication can prevent the opponent from knowing that a wireless communication has occurred. In the additive white Gaussian noise channels, if we only take the ambient noise into account, a square root law was obtained and the result shows that Alice can reliably and covertly transmit $\mathcal{O}(\sqrt{n})$ bits to Bob in $n$ channel uses. If additional "friendly" node closest to the adversary can produce artificial noise to aid in hiding the communication, the covert throughput can be improved. In this paper, we consider the covert communication in noisy wireless networks, where potential transmitters form a stationary Poisson point process. Alice wishes to communicate covertly to Bob without being detected by the warden Willie. In this scenario, Bob and Willie not only experience the ambient noise, but also the aggregated interference simultaneously. Although the random interference sources are not in collusion with Alice and Bob, our results show that uncertainty in noise and interference experienced by Willie is beneficial to Alice. When the distance between Alice and Willie $d_{a,w}=\omega(n^{\delta/4})$ ($\delta=2/\alpha$ is stability exponent), Alice can reliably and covertly transmit $\mathcal{O}(\log_2\sqrt{n})$ bits to Bob in $n$ channel uses, and there is no limitation on the transmit power of transmitters. Although the covert throughout is lower than the square root law and the friendly jamming scheme, the spatial throughout of the network is higher, and Alice does not presuppose to know the location of Willie. From the network perspective, the communications are hidden in the noisy wireless networks, and what Willie sees is merely a "\emphshadow" wireless network where he knows for certain some nodes are transmitting, but he cannot catch anyone red-handed.
- Prediction of popularity has profound impact for social media, since it offers opportunities to reveal individual preference and public attention from evolutionary social systems. Previous research, although achieves promising results, neglects one distinctive characteristic of social data, i.e., sequentiality. For example, the popularity of online content is generated over time with sequential post streams of social media. To investigate the sequential prediction of popularity, we propose a novel prediction framework called Deep Temporal Context Networks (DTCN) by incorporating both temporal context and temporal attention into account. Our DTCN contains three main components, from embedding, learning to predicting. With a joint embedding network, we obtain a unified deep representation of multi-modal user-post data in a common embedding space. Then, based on the embedded data sequence over time, temporal context learning attempts to recurrently learn two adaptive temporal contexts for sequential popularity. Finally, a novel temporal attention is designed to predict new popularity (the popularity of a new user-post pair) with temporal coherence across multiple time-scales. Experiments on our released image dataset with about 600K Flickr photos demonstrate that DTCN outperforms state-of-the-art deep prediction algorithms, with an average of 21.51% relative performance improvement in the popularity prediction (Spearman Ranking Correlation).
- Dec 13 2017 cs.CV arXiv:1712.04426v1In this paper, we introduce a new method for classifying 3D objects. Our main idea is to project a 3D object onto a spherical domain centered around its barycenter and develop neural network to classify the spherical projection. We introduce two complementary projections. The first captures depth variations of a 3D object, and the second captures contour-information viewed from different angles. Spherical projections combine key advantages of two main-stream 3D classification methods: image-based and 3D-based. Specifically, spherical projections are locally planar, allowing us to use massive image datasets (e.g, ImageNet) for pre-training. Also spherical projections are similar to voxel-based methods, as they encode complete information of a 3D object in a single neural network capturing dependencies across different views. Our novel network design can fully utilize these advantages. Experimental results on ModelNet40 and ShapeNetCore show that our method is superior to prior methods.
- Dec 05 2017 cs.CV arXiv:1712.00899v1Sketch portrait generation is of wide applications including digital entertainment and law enforcement. Despite the great progress achieved by existing face sketch generation methods, they mostly yield blurred effects and great deformation over various facial parts. In order to tackle this challenge, we propose a novel composition-aided generative adversarial network (CA-GAN) for sketch portrait generation. First, we utilize paired inputs including a face photo and the corresponding pixel-wise face labels for generating the portrait. Second, we propose an improved pixel loss, termed compositional loss, to focus training on hard-generated components and delicate facial structures. Moreover, we use stacked CA-GANs (stack-CA-GAN) to further rectify defects and add compelling details. Experimental results show that our method is capable of generating identity-preserving, sketch-realistic, and visually comfortable sketch portraits over a wide range of challenging data, and outperforms existing methods. Besides, our methods show considerable generalization ability.
- Dec 05 2017 cs.AR arXiv:1712.01021v2To overcome the limitations of conventional floating-point number formats, an interval arithmetic and variable-width storage format called universal number (unum) has been recently introduced. This paper presents the first (to the best of our knowledge) silicon implementation measurements of an application-specific integrated circuit (ASIC) for unum floating-point arithmetic. The designed chip includes a 128-bit wide unum arithmetic unit to execute additions and subtractions, while also supporting lossless (for intermediate results) and lossy (for external data movements) compression units to exploit the memory usage reduction potential of the unum format. Our chip, fabricated in a 65 nm CMOS process, achieves a maximum clock frequency of 413 MHz at 1.2 V with an average measured power of 210 uW/MHz.
- Nov 30 2017 cs.CV arXiv:1711.10485v1In this paper, we propose an Attentional Generative Adversarial Network (AttnGAN) that allows attention-driven, multi-stage refinement for fine-grained text-to-image generation. With a novel attentional generative network, the AttnGAN can synthesize fine-grained details at different subregions of the image by paying attentions to the relevant words in the natural language description. In addition, a deep attentional multimodal similarity model is proposed to compute a fine-grained image-text matching loss for training the generator. The proposed AttnGAN significantly outperforms the previous state of the art, boosting the best reported inception score by 14.14% on the CUB dataset and 170.25% on the more challenging COCO dataset. A detailed analysis is also performed by visualizing the attention layers of the AttnGAN. It for the first time shows that the layered attentional GAN is able to automatically select the condition at the word level for generating different parts of the image.
- Nov 30 2017 cs.SE arXiv:1711.10875v1This paper presents the design of InterPSS simulation engine, including its object model, open software architecture, and software development process. Several advanced applications, including an integrated transmission and distribution co-simulation, an electromagnetic transient and phasor domain hybrid simulation, and InterPSS integration with a market simulator, have been developed by either extending InterPSS simulation engine or integrating it with other programs and/or platforms. These advanced applications show that the open architecture combined with the comprehensive modeling and simulation capabilities make InterPSS a very attractive option for the research and the future new power system simulation application development.
- Nov 28 2017 cs.CV arXiv:1711.09191v1When supervising an object detector with weakly labeled data, most existing approaches are prone to trapping in the discriminative object parts, e.g., finding the face of a cat instead of the full body, due to lacking the supervision on the extent of full objects. To address this challenge, we incorporate object segmentation into the detector training, which guides the model to correctly localize the full objects. We propose the multiple instance curriculum learning (MICL) method, which injects curriculum learning (CL) into the multiple instance learning (MIL) framework. The MICL method starts by automatically picking the easy training examples, where the extent of the segmentation masks agree with detection bounding boxes. The training set is gradually expanded to include harder examples to train strong detectors that handle complex images. The proposed MICL method with segmentation in the loop outperforms the state-of-the-art weakly supervised object detectors by a substantial margin on the PASCAL VOC datasets.
- Nov 27 2017 cs.CV arXiv:1711.08590v1We study the task of image inpainting, which is to fill in the missing region of an incomplete image with plausible contents. To this end, we propose a learning-based approach to generate visually coherent completion given a high-resolution image with missing components. In order to overcome the difficulty to directly learn the distribution of high-dimensional image data, we divide the task into initialization and texture-refinement as two separate steps and model each step with a deep neural network. We also use simple heuristics to guide transferring of textures from boundary to the hole. We show that, by using such techniques, inpainting reduces to the problem of learning two image-feature translation functions of much smaller dimensionality. We evaluate our method on several public datasets and show that we not only generate results of comparable or better visual quality, but are orders of magnitude faster than previous state-of-the-art methods.
- Nov 27 2017 cs.CV arXiv:1711.08588v1We introduce Similarity Group Proposal Network (SGPN), a simple and intuitive deep learning framework for 3D object instance segmentation on point clouds. SGPN uses a single network to predict point grouping proposals and a corresponding semantic class for each proposal, from which we can directly extract instance segmentation results. Important to the effectiveness of SGPN is its novel representation of 3D instance segmentation results in the form of a similarity matrix that indicates the similarity between each pair of points in embedded feature space, thus producing an accurate grouping proposal for each point. To the best of our knowledge, SGPN is the first framework to learn 3D instance-aware semantic segmentation on point clouds. Experimental results on various 3D scenes show the effectiveness of our method on 3D instance segmentation, and we also evaluate the capability of SGPN to improve 3D object detection and semantic segmentation results. We also demonstrate its flexibility by seamlessly incorporating 2D CNN features into the framework to boost performance.
- Nov 21 2017 cs.LG arXiv:1711.06867v1Visual attributes, which refer to human-labeled semantic annotations, have gained increasing popularity in a wide range of real world applications. Generally, the existing attribute learning methods fall into two categories: one focuses on learning user-specific labels separately for different attributes, while the other one focuses on learning crowd-sourced global labels jointly for multiple attributes. However, both categories ignore the joint effect of the two mentioned factors: the personal diversity with respect to the global consensus; and the intrinsic correlation among multiple attributes. To overcome this challenge, we propose a novel model to learn user-specific predictors across multiple attributes. In our proposed model, the diversity of personalized opinions and the intrinsic relationship among multiple attributes are unified in a common-to-special manner. To this end, we adopt a three-component decomposition. Specifically, our model integrates a common cognition factor, an attribute-specific bias factor and a user-specific bias factor. Meanwhile Lasso and group Lasso penalties are adopted to leverage efficient feature selection. Furthermore, theoretical analysis is conducted to show that our proposed method could reach reasonable performance. Eventually, the empirical study carried out in this paper demonstrates the effectiveness of our proposed method.
- Nov 20 2017 cs.CV arXiv:1711.06375v1Recent advances in convolutional neural networks have shown promising results in 3D shape completion. But due to GPU memory limitations, these methods can only produce low-resolution outputs. To inpaint 3D models with semantic plausibility and contextual details, we introduce a hybrid framework that combines a 3D Encoder-Decoder Generative Adversarial Network (3D-ED-GAN) and a Long-term Recurrent Convolutional Network (LRCN). The 3D-ED-GAN is a 3D convolutional neural network trained with a generative adversarial paradigm to fill missing 3D data in low-resolution. LRCN adopts a recurrent neural network architecture to minimize GPU memory usage and incorporates an Encoder-Decoder pair into a Long Short-term Memory Network. By handling the 3D model as a sequence of 2D slices, LRCN transforms a coarse 3D shape into a more complete and higher resolution volume. While 3D-ED-GAN captures global contextual structure of the 3D shape, LRCN localizes the fine-grained details. Experimental results on both real-world and synthetic data show reconstructions from corrupted models result in complete and high-resolution 3D objects.
- Nov 09 2017 cs.SY arXiv:1711.02736v1Transmission and distribution dynamic co-simulation is a practical and effective approach to leverage existing simulation tools for transmission and distribution systems to simulate dynamic stability and performance of transmission and distribution systems in a systematic manner. Given that these tools are developed as stand-alone programs and there are inherent differences between them, interface techniques become critical to bridge them. Two important unsolved questions are: 1) which interface technique is better and should be used, and 2) how the modeling and simulation capabilities in these tools that are available and can be exploited for co-simulation should be considered when selecting an interface technique. To address these questions, this paper presents a comparative study for different interface techniques that can be employed for T and D dynamic co-simulation. The study provides insights into the pros and cons of each interface technique, and helps researchers make informed decisions on choosing the interface techniques.
- Nov 07 2017 cs.CV arXiv:1711.01371v1As a newly emerging and significant topic in computer vision community, co-saliency detection aims at discovering the common salient objects in multiple related images. The existing methods often generate the co-saliency map through a direct forward pipeline which is based on the designed cues or initialization, but lack the refinement-cycle scheme. Moreover, they mainly focus on RGB image and ignore the depth information for RGBD images. In this paper, we propose an iterative RGBD co-saliency framework, which utilizes the existing single saliency maps as the initialization, and generates the final RGBD cosaliency map by using a refinement-cycle model. Three schemes are employed in the proposed RGBD co-saliency framework, which include the addition scheme, deletion scheme, and iteration scheme. The addition scheme is used to highlight the salient regions based on intra-image depth propagation and saliency propagation, while the deletion scheme filters the saliency regions and removes the non-common salient regions based on interimage constraint. The iteration scheme is proposed to obtain more homogeneous and consistent co-saliency map. Furthermore, a novel descriptor, named depth shape prior, is proposed in the addition scheme to introduce the depth information to enhance identification of co-salient objects. The proposed method can effectively exploit any existing 2D saliency model to work well in RGBD co-saliency scenarios. The experiments on two RGBD cosaliency datasets demonstrate the effectiveness of our proposed framework.
- Nov 06 2017 cs.CV arXiv:1711.01043v1Being inspired by child's learning experience - taught first and followed by observation and questioning, we investigate a critically supervised learning methodology for object detection in this work. Specifically, we propose a taught-observe-ask (TOA) method that consists of several novel components such as negative object proposal, critical example mining, and machine-guided question-answer (QA) labeling. To consider labeling time and performance jointly, new evaluation methods are developed to compare the performance of the TOA method, with the fully and weakly supervised learning methods. Extensive experiments are conducted on the PASCAL VOC and the Caltech benchmark datasets. The TOA method provides significantly improved performance of weakly supervision yet demands only about 3-6% of labeling time of full supervision. The effectiveness of each novel component is also analyzed.
- Nov 01 2017 cs.CL arXiv:1710.11475v1Deep learning (DL) has in recent years been widely used in natural language processing (NLP) applications due to its superior performance. However, while natural languages are rich in grammatical structure, DL has not been able to explicitly represent and enforce such structures. This paper proposes a new architecture to bridge this gap by exploiting tensor product representations (TPR), a structured neural-symbolic framework developed in cognitive science over the past 20 years, with the aim of integrating DL with explicit language structures and rules. We call it the Tensor Product Generation Network (TPGN), and apply it to 1) image captioning, 2) classification of the part of speech of a word, and 3) identification of the phrase structure of a sentence. The key ideas of TPGN are: 1) unsupervised learning of role-unbinding vectors of words via a TPR-based deep neural network, and 2) integration of TPR with typical DL architectures including Long Short-Term Memory (LSTM) models. The novelty of our approach lies in its ability to generate a sentence and extract partial grammatical structure of the sentence by using role-unbinding vectors, which are obtained in an unsupervised manner. Experimental results demonstrate the effectiveness of the proposed approach.
- Oct 31 2017 cs.MM arXiv:1710.11090v1A large-scale video quality dataset called the VideoSet has been constructed recently to measure human subjective experience of H.264 coded video in terms of the just-noticeable-difference (JND). It measures the first three JND points of 5-second video of resolution 1080p, 720p, 540p and 360p. Based on the VideoSet, we propose a method to predict the satisfied-user-ratio (SUR) curves using a machine learning framework. First, we partition a video clip into local spatial-temporal segments and evaluate the quality of each segment using the VMAF quality index. Then, we aggregate these local VMAF measures to derive a global one. Finally, the masking effect is incorporated and the support vector regression (SVR) is used to predict the SUR curves, from which the JND points can be derived. Experimental results are given to demonstrate the performance of the proposed SUR prediction method.
- Oct 18 2017 cs.CV arXiv:1710.06104v2We introduce a large-scale 3D shape understanding benchmark using data and annotation from ShapeNet 3D object database. The benchmark consists of two tasks: part-level segmentation of 3D shapes and 3D reconstruction from single view images. Ten teams have participated in the challenge and the best performing teams have outperformed state-of-the-art approaches on both tasks. A few novel deep learning architectures have been proposed on various 3D representations on both tasks. We report the techniques used by each team and the corresponding performances. In addition, we summarize the major discoveries from the reported results and possible trends for the future work in the field.
- Oct 17 2017 cs.CV arXiv:1710.05172v1Co-saliency detection aims at extracting the common salient regions from an image group containing two or more relevant images. It is a newly emerging topic in computer vision community. Different from the most existing co-saliency methods focusing on RGB images, this paper proposes a novel co-saliency detection model for RGBD images, which utilizes the depth information to enhance identification of co-saliency. First, the intra saliency map for each image is generated by the single image saliency model, while the inter saliency map is calculated based on the multi-constraint feature matching, which represents the constraint relationship among multiple images. Then, the optimization scheme, namely Cross Label Propagation (CLP), is used to refine the intra and inter saliency maps in a cross way. Finally, all the original and optimized saliency maps are integrated to generate the final co-saliency result. The proposed method introduces the depth information and multi-constraint feature matching to improve the performance of co-saliency detection. Moreover, the proposed method can effectively exploit any existing single image saliency model to work well in co-saliency scenarios. Experiments on two RGBD co-saliency datasets demonstrate the effectiveness of our proposed model.
- Oct 17 2017 cs.CV arXiv:1710.05174v1Stereoscopic perception is an important part of human visual system that allows the brain to perceive depth. However, depth information has not been well explored in existing saliency detection models. In this letter, a novel saliency detection method for stereoscopic images is proposed. Firstly, we propose a measure to evaluate the reliability of depth map, and use it to reduce the influence of poor depth map on saliency detection. Then, the input image is represented as a graph, and the depth information is introduced into graph construction. After that, a new definition of compactness using color and depth cues is put forward to compute the compactness saliency map. In order to compensate the detection errors of compactness saliency when the salient regions have similar appearances with background, foreground saliency map is calculated based on depth-refined foreground seeds selection mechanism and multiple cues contrast. Finally, these two saliency maps are integrated into a final saliency map through weighted-sum method according to their importance. Experiments on two publicly available stereo datasets demonstrate that the proposed method performs better than other 10 state-of-the-art approaches.
- Oct 05 2017 cs.SC arXiv:1710.01301v1In this paper, we give two new deterministic interpolation algorithms for black-box multivariate polynomials. For a t-sparse and n-variate polynomial f with a degree bound D and a term bound T, we show that at least half of the terms of f can be recovered from the univariate polynomials obtained from f by three types of Kronecker substitutions. We then give a criterion to check whether these terms really belong to f. Repeat the above procedure for at most log(t) times, f can be recovered. The algorithm has better complexity in D than existing deterministic algorithms when the coefficients are from Q, and has better complexities in T and D and the same complexity in n when the coefficients are from a finite field.
- We present a new tensor product generation network (TPGN) that generates natural language descriptions for images. The model has a novel architecture that instantiates a general framework for encoding and processing symbolic structure through neural network computation. This framework is built on Tensor Product Representations (TPRs). We evaluated the proposed TPGN on the MS COCO image captioning task. The experimental results show that the TPGN outperforms the LSTM based state-of-the-art baseline with a significant margin. Further, we show that our caption generation model can be interpreted as generating sequences of grammatical categories and retrieving words by their categories from a plan encoded as a distributed representation.
- Sep 27 2017 cs.SC arXiv:1709.08979v3In this paper, we propose new deterministic interpolation algorithms and Monte Carlo interpolation algorithms for sparse multivariate polynomials represented by straight-line programs. Let f be an n-variate polynomial with a degree bound D and and term bound T. Our deterministic algorithms have better complexities than existing deterministic interpolation algorithms in most cases. Our Monte Carlo interpolation algorithms are asymptotically optimal in the sense that their bit complexities are linear in nT and cubic in log D, when the coefficients of the polynomials are from a finite field. Since f has size nT, our algorithm implies that interpolating a straight-line program polynomial f is as easy as reading f, if the log D factor in the complexities is not considered. Based on the Monte Carlo interpolation algorithm, we give an asymptotically optimal algorithm for the multiplication of several multivariate polynomials, whose complexity is softly linear in the input size plus the output size, if the logarithm factors are ignored.
- Aug 04 2017 cs.SY arXiv:1708.00939v1The composite load model (CLM) proposed by the Western Electricity Coordinating Council (WECC) is gaining increasing traction in industry, particularly in North America. At the same time, it has been recognized that further improvements in structure, initialization and aggregation methods are needed to enhance model accuracy. However, the lack of an open-source implementation of the WECC CLM has become a roadblock for many researchers for further improvement. To bridge this gap, this paper presents the first open reference implementation of the WECC CLM. Individual load components and the CLM are first developed and tested in Matlab, then translated to the high performance computing (HPC) based, parallel simulation framework - GridPACK. The main contributions of the paper include: 1) presenting important yet undocumented details of modeling and initializing the CLM, particularly for a parallel simulation frame-work like GridPACK; 2) implementation details of the load components such as the single-phase air conditioner motor; 3) implementing the CLM in a modular and extensible manner. The implementation has been tested at both the component as well as system levels and benchmarked against commercial simulation programs, with satisfactory accuracy.
- Outlier detection is a crucial part of robust evaluation for crowdsourceable assessment of Quality of Experience (QoE) and has attracted much attention in recent years. In this paper, we propose some simple and fast algorithms for outlier detection and robust QoE evaluation based on the nonconvex optimization principle. Several iterative procedures are designed with or without knowing the number of outliers in samples. Theoretical analysis is given to show that such procedures can reach statistically good estimates under mild conditions. Finally, experimental results with simulated and real-world crowdsourcing datasets show that the proposed algorithms could produce similar performance to Huber-LASSO approach in robust ranking, yet with nearly 8 or 90 times speed-up, without or with a prior knowledge on the sparsity size of outliers, respectively. Therefore the proposed methodology provides us a set of helpful tools for robust QoE evaluation with crowdsourcing data.
- Jul 21 2017 cs.CV arXiv:1707.06426v1Recent development in fully convolutional neural network enables efficient end-to-end learning of semantic segmentation. Traditionally, the convolutional classifiers are taught to learn the representative semantic features of labeled semantic objects. In this work, we propose a reverse attention network (RAN) architecture that trains the network to capture the opposite concept (i.e., what are not associated with a target class) as well. The RAN is a three-branch network that performs the direct, reverse and reverse-attention learning processes simultaneously. Extensive experiments are conducted to show the effectiveness of the RAN in semantic segmentation. Being built upon the DeepLabv2-LargeFOV, the RAN achieves the state-of-the-art mIoU score (48.1%) for the challenging PASCAL-Context dataset. Significant performance improvements are also observed for the PASCAL-VOC, Person-Part, NYUDv2 and ADE20K datasets.
- Jul 05 2017 cs.NI arXiv:1707.00805v2In the creation of a smart future information society, Internet of Things (IoT) and Content Centric Networking (CCN) break two key barriers for both the front-end sensing and back-end networking. However, we still observe the missing piece of the research that dominates the current design, e.g., lacking of the knowledge penetrated into both sensing and networking to glue them holistically. In this paper, we introduce and discuss a new networking paradigm, called Knowledge Centric Networking (KCN), as a promising solution. The key insight of KCN is to leverage emerging machine learning or deep learning techniques to create knowledge for networking system designs, and extract knowledge from collected data to facilitate enhanced system intelligence and interactivity, improved quality of service, communication with better controllability, and lower cost. This paper presents the KCN design rationale, the KCN benefits and also the potential research opportunities.
- Jun 06 2017 cs.SC arXiv:1706.00914v1In this paper, we give new sparse interpolation algorithms for black box univariate and multivariate rational functions h=f/g whose coefficients are integers with an upper bound. The main idea is as follows: choose a proper integer beta and let h(beta) = a/b with gcd(a,b)=1. Then f and g can be computed by solving the polynomial interpolation problems f(beta)=ka and g(beta)=ka for some integer k. It is shown that the univariate interpolation algorithm is almost optimal and multivariate interpolation algorithm has low complexity in T but the data size is exponential in n.
- May 18 2017 cs.CV arXiv:1705.05998v1Automatic localization and labeling of vertebra in 3D medical images plays an important role in many clinical tasks, including pathological diagnosis, surgical planning and postoperative assessment. However, the unusual conditions of pathological cases, such as the abnormal spine curvature, bright visual imaging artifacts caused by metal implants, and the limited field of view, increase the difficulties of accurate localization. In this paper, we propose an automatic and fast algorithm to localize and label the vertebra centroids in 3D CT volumes. First, we deploy a deep image-to-image network (DI2IN) to initialize vertebra locations, employing the convolutional encoder-decoder architecture together with multi-level feature concatenation and deep supervision. Next, the centroid probability maps from DI2IN are iteratively evolved with the message passing schemes based on the mutual relation of vertebra centroids. Finally, the localization results are refined with sparsity regularization. The proposed method is evaluated on a public dataset of 302 spine CT volumes with various pathologies. Our method outperforms other state-of-the-art methods in terms of localization accuracy. The run time is around 3 seconds on average per case. To further boost the performance, we retrain the DI2IN on additional 1000+ 3D CT volumes from different patients. To the best of our knowledge, this is the first time more than 1000 3D CT volumes with expert annotation are adopted in experiments for the anatomic landmark detection tasks. Our experimental results show that training with such a large dataset significantly improves the performance and the overall identification rate, for the first time by our knowledge, reaches 90 %.
- Compute-and-Forward (C&F) has been proposed as an efficient strategy to reduce the backhaul load for the distributed antenna systems. Finding the optimal coefficients in C&F has commonly been treated as a shortest vector problem (SVP), which is N-P hard. The point of our work and of Sahraei's recent work is that the C&F coefficient problem can be much simpler. Due to the special structure of C&F, some low polynomial complexity optimal algorithms have recently been developed. However these methods can be applied to real valued channels and integer based lattices only. In this paper, we consider the complex valued channel with complex integer based lattices. For the first time, we propose a low polynomial complexity algorithm to find the optimal solution for the complex scenario. Then we propose a simple linear search algorithm which is conceptually suboptimal, however numerical results show that the performance degradation is negligible compared to the optimal method. Both algorithms are suitable for lattices over any algebraic integers, and significantly outperform the lattice reduction algorithm. The complexity of both algorithms are investigated both theoretically and numerically. The results show that our proposed algorithms achieve better performance-complexity trade-offs compared to the existing algorithms.
- Apr 17 2017 cs.SC arXiv:1704.04359v2In this paper, we give new sparse interpolation algorithms for black box polynomial f whose coefficients are from a finite set. In the univariate case, we recover f from one evaluation of f(a) for a sufficiently large number a. In the multivariate case, we introduce the modified Kronecker substitution to reduce the interpolation of a multivariate polynomial to the univariate case. Both algorithms have polynomial bit-size complexity.
- Apr 11 2017 cs.CV arXiv:1704.02447v2In this paper, we study the task of 3D human pose estimation in the wild. This task is challenging due to lack of training data, as existing datasets are either in the wild images with 2D pose or in the lab images with 3D pose. We propose a weakly-supervised transfer learning method that uses mixed 2D and 3D labels in a unified deep neutral network that presents two-stage cascaded structure. Our network augments a state-of-the-art 2D pose estimation sub-network with a 3D depth regression sub-network. Unlike previous two stage approaches that train the two sub-networks sequentially and separately, our training is end-to-end and fully exploits the correlation between the 2D pose and depth estimation sub-tasks. The deep features are better learnt through shared representations. In doing so, the 3D pose labels in controlled lab environments are transferred to in the wild images. In addition, we introduce a 3D geometric constraint to regularize the 3D pose prediction, which is effective in the absence of ground truth depth labels. Our method achieves competitive results on both 2D and 3D benchmarks.
- Mar 20 2017 cs.SD arXiv:1703.06052v1Audio tagging aims to perform multi-label classification on audio chunks and it is a newly proposed task in the Detection and Classification of Acoustic Scenes and Events 2016 (DCASE 2016) challenge. This task encourages research efforts to better analyze and understand the content of the huge amounts of audio data on the web. The difficulty in audio tagging is that it only has a chunk-level label without a frame-level label. This paper presents a weakly supervised method to not only predict the tags but also indicate the temporal locations of the occurred acoustic events. The attention scheme is found to be effective in identifying the important frames while ignoring the unrelated frames. The proposed framework is a deep convolutional recurrent model with two auxiliary modules: an attention module and a localization module. The proposed algorithm was evaluated on the Task 4 of DCASE 2016 challenge. State-of-the-art performance was achieved on the evaluation set with equal error rate (EER) reduced from 0.13 to 0.11, compared with the convolutional recurrent baseline system.
- 3D shape models are naturally parameterized using vertices and faces, \ie, composed of polygons forming a surface. However, current 3D learning paradigms for predictive and generative tasks using convolutional neural networks focus on a voxelized representation of the object. Lifting convolution operators from the traditional 2D to 3D results in high computational overhead with little additional benefit as most of the geometry information is contained on the surface boundary. Here we study the problem of directly generating the 3D shape surface of rigid and non-rigid shapes using deep convolutional neural networks. We develop a procedure to create consistent `geometry images' representing the shape surface of a category of 3D objects. We then use this consistent representation for category-specific shape surface generation from a parametric representation or an image by developing novel extensions of deep residual networks for the task of geometry image generation. Our experiments indicate that our network learns a meaningful representation of shape surfaces allowing it to interpolate between shape orientations and poses, invent new shape surfaces and reconstruct 3D shape surfaces from previously unseen images.
- Environmental audio tagging is a newly proposed task to predict the presence or absence of a specific audio event in a chunk. Deep neural network (DNN) based methods have been successfully adopted for predicting the audio tags in the domestic audio scene. In this paper, we propose to use a convolutional neural network (CNN) to extract robust features from mel-filter banks (MFBs), spectrograms or even raw waveforms for audio tagging. Gated recurrent unit (GRU) based recurrent neural networks (RNNs) are then cascaded to model the long-term temporal structure of the audio signal. To complement the input information, an auxiliary CNN is designed to learn on the spatial features of stereo recordings. We evaluate our proposed methods on Task 4 (audio tagging) of the Detection and Classification of Acoustic Scenes and Events 2016 (DCASE 2016) challenge. Compared with our recent DNN-based method, the proposed structure can reduce the equal error rate (EER) from 0.13 to 0.11 on the development set. The spatial features can further reduce the EER to 0.10. The performance of the end-to-end learning on raw waveforms is also comparable. Finally, on the evaluation set, we get the state-of-the-art performance with 0.12 EER while the performance of the best existing system is 0.15 EER.
- This paper generalizes the piggybacking constructions for distributed storage systems by considering various protected instances and piggybacked instances. Analysis demonstrates that the proportion of protected instances determines the average repair bandwidth for a systematic node. By optimizing the proportion of protected instances, the repair ratio of generalized piggybacking codes approaches zero instead of 50% as the number of parity check nodes tends to infinity. Furthermore, the computational complexity for repairing a single systematic node cost by generalized piggybacking codes is less than that of the existing piggybacking designs.
- Nov 23 2016 cs.CV arXiv:1611.07485v2Recurrent neural network (RNN), as a powerful contextual dependency modeling framework, has been widely applied to scene labeling problems. However, this work shows that directly applying traditional RNN architectures, which unfolds a 2D lattice grid into a sequence, is not sufficient to model structure dependencies in images due to the "impact vanishing" problem. First, we give an empirical analysis about the "impact vanishing" problem. Then, a new RNN unit named Recurrent Neural Network with explicit long range conditioning (RNN-ELC) is designed to alleviate this problem. A novel neural network architecture is built for scene labeling tasks where one of the variants of the new RNN unit, Gated Recurrent Unit with Explicit Long-range Conditioning (GRU-ELC), is used to model multi scale contextual dependencies in images. We validate the use of GRU-ELC units with state-of-the-art performance on three standard scene labeling datasets. Comprehensive experiments demonstrate that the new GRU-ELC unit benefits scene labeling problem a lot as it can encode longer contextual dependencies in images more effectively than traditional RNN units.
- In this paper, we consider the uplink of cell-free massive MIMO systems, where a large number of distributed single antenna access points (APs) serve a much smaller number of users simultaneously via limited backhaul. For the first time, we investigate the performance of compute-and-forward (C&F) in such an ultra dense network with a realistic channel model (including fading, pathloss and shadowing). By utilising the characteristic of pathloss, a low complexity coefficient selection algorithm for C\&F is proposed. We also give a greedy AP selection method for message recovery. Additionally, we compare the performance of C&F to some other promising linear strategies for distributed massive MIMO, such as small cells (SC) and maximum ratio combining (MRC). Numerical results reveal that C&F not only reduces the backhaul load, but also significantly increases the system throughput for the symmetric scenario.
- In this paper, we study self-dual codes over $\mathbb{Z}_2 \times (\mathbb{Z}_2+u\mathbb{Z}_2) $, where $u^2=0$. Three types of self-dual codes are defined. For each type, the possible values $\alpha,\beta$ such that there exists a code $\mathcal{C}\subseteq \mathbb{Z}_{2}^\alpha\times (\mathbb{Z}_2+u\mathbb{Z}_2)^\beta$ are established. We also present several approaches to construct self-dual codes over $\mathbb{Z}_2 \times (\mathbb{Z}_2+u\mathbb{Z}_2) $. Moreover, the structure of two-weight self-dual codes is completely obtained for $\alpha \cdot\beta\neq 0$.
- We consider optimal channel shortener design for reduced-state soft-output Viterbi equalizer (RS-SOVE) in single-carrier (SC) systems. To use RS-SOVE, three receiver filters need to be designed: a prefilter, a target response and a feedback filter. The collection of these three filters are commonly referred to as the \lq\lqchannel shortener\rq\rq. Conventionally, the channel shortener is designed to transform an intersymbol interference (ISI) channel into an equivalent minimum-phase equivalent form. In this paper, we design the channel shortener to maximize a mutual information lower bound (MILB) based on a mismatched detection model. By taking the decision-feedback quality in the RS-SOVE into consideration, the prefilter and feedback filter are found in closed forms, while the target response is optimized via a gradient-ascending approach with the gradient explicitly derived. The information theoretical properties of the proposed channel shortener are analyzed. Moreover, we show through numerical results that, the proposed channel shortener design achieves superior detection performance compared to previous channel shortener designs at medium and high code-rates.
- Aug 09 2016 cs.NI arXiv:1608.02427v3Initial timing acquisition in narrow-band IoT (NB-IoT) devices is done by detecting a periodically transmitted known sequence. The detection has to be done at lowest possible latency, because the RF-transceiver, which dominates downlink power consumption of an NB-IoT modem, has to be turned on throughout this time. Auto-correlation detectors show low computational complexity from a signal processing point of view at the price of a higher detection latency. In contrast a maximum likelihood cross-correlation detector achieves low latency at a higher complexity as shown in this paper. We present a hardware implementation of the maximum likelihood cross-correlation detection. The detector achieves an average detection latency which is a factor of two below that of an auto-correlation method and is able to reduce the required energy per timing acquisition by up to 34%.
- Environmental audio tagging aims to predict only the presence or absence of certain acoustic events in the interested acoustic scene. In this paper we make contributions to audio tagging in two parts, respectively, acoustic modeling and feature learning. We propose to use a shrinking deep neural network (DNN) framework incorporating unsupervised feature learning to handle the multi-label classification task. For the acoustic modeling, a large set of contextual frames of the chunk are fed into the DNN to perform a multi-label classification for the expected tags, considering that only chunk (or utterance) level rather than frame-level labels are available. Dropout and background noise aware training are also adopted to improve the generalization capability of the DNNs. For the unsupervised feature learning, we propose to use a symmetric or asymmetric deep de-noising auto-encoder (sDAE or aDAE) to generate new data-driven features from the Mel-Filter Banks (MFBs) features. The new features, which are smoothed against background noise and more compact with contextual information, can further improve the performance of the DNN baseline. Compared with the standard Gaussian Mixture Model (GMM) baseline of the DCASE 2016 audio tagging challenge, our proposed method obtains a significant equal error rate (EER) reduction from 0.21 to 0.13 on the development set. The proposed aDAE system can get a relative 6.7% EER reduction compared with the strong DNN baseline on the development set. Finally, the results also show that our approach obtains the state-of-the-art performance with 0.15 EER on the evaluation set of the DCASE 2016 audio tagging task while EER of the first prize of this challenge is 0.17.
- In this paper, we present a deep neural network (DNN)-based acoustic scene classification framework. Two hierarchical learning methods are proposed to improve the DNN baseline performance by incorporating the hierarchical taxonomy information of environmental sounds. Firstly, the parameters of the DNN are initialized by the proposed hierarchical pre-training. Multi-level objective function is then adopted to add more constraint on the cross-entropy based loss function. A series of experiments were conducted on the Task1 of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2016 challenge. The final DNN-based system achieved a 22.9% relative improvement on average scene classification error as compared with the Gaussian Mixture Model (GMM)-based benchmark system across four standard folds.
- Acoustic event detection for content analysis in most cases relies on lots of labeled data. However, manually annotating data is a time-consuming task, which thus makes few annotated resources available so far. Unlike audio event detection, automatic audio tagging, a multi-label acoustic event classification task, only relies on weakly labeled data. This is highly desirable to some practical applications using audio analysis. In this paper we propose to use a fully deep neural network (DNN) framework to handle the multi-label classification task in a regression way. Considering that only chunk-level rather than frame-level labels are available, the whole or almost whole frames of the chunk were fed into the DNN to perform a multi-label regression for the expected tags. The fully DNN, which is regarded as an encoding function, can well map the audio features sequence to a multi-tag vector. A deep pyramid structure was also designed to extract more robust high-level features related to the target tags. Further improved methods were adopted, such as the Dropout and background noise aware training, to enhance its generalization capability for new audio recordings in mismatched environments. Compared with the conventional Gaussian Mixture Model (GMM) and support vector machine (SVM) methods, the proposed fully DNN-based method could well utilize the long-term temporal information with the whole chunk as the input. The results show that our approach obtained a 15% relative improvement compared with the official GMM-based method of DCASE 2016 challenge.
- Apr 21 2016 cs.CV arXiv:1604.06079v2Due to the abundance of 2D product images from the Internet, developing efficient and scalable algorithms to recover the missing depth information is central to many applications. Recent works have addressed the single-view depth estimation problem by utilizing convolutional neural networks. In this paper, we show that exploring symmetry information, which is ubiquitous in man made objects, can significantly boost the quality of such depth predictions. Specifically, we propose a new convolutional neural network architecture to first estimate dense symmetric correspondences in a product image and then propose an optimization which utilizes this information explicitly to significantly improve the quality of single-view depth estimations. We have evaluated our approach extensively, and experimental results show that this approach outperforms state-of-the-art depth estimation techniques.
- Apr 20 2016 cs.CV arXiv:1604.05383v1Discriminative deep learning approaches have shown impressive results for problems where human-labeled ground truth is plentiful, but what about tasks where labels are difficult or impossible to obtain? This paper tackles one such problem: establishing dense visual correspondence across different object instances. For this task, although we do not know what the ground-truth is, we know it should be consistent across instances of that category. We exploit this consistency as a supervisory signal to train a convolutional neural network to predict cross-instance correspondences between pairs of images depicting objects of the same category. For each pair of training images we find an appropriate 3D CAD model and render two synthetic views to link in with the pair, establishing a correspondence flow 4-cycle. We use ground-truth synthetic-to-synthetic correspondences, provided by the rendering engine, to train a ConvNet to predict synthetic-to-real, real-to-real and real-to-synthetic correspondences that are cycle-consistent with the ground-truth. At test time, no CAD models are required. We demonstrate that our end-to-end trained ConvNet supervised by cycle-consistency outperforms state-of-the-art pairwise matching methods in correspondence-related tasks.
- Motivation: High-throughput experimental techniques have been producing more and more protein-protein interaction (PPI) data. PPI network alignment greatly benefits the understanding of evolutionary relationship among species, helps identify conserved sub-networks and provides extra information for functional annotations. Although a few methods have been developed for multiple PPI network alignment, the alignment quality is still far away from perfect and thus, new network alignment methods are needed. Result: In this paper, we present a novel method, denoted as ConvexAlign, for joint alignment of multiple PPI networks by convex optimization of a scoring function composed of sequence similarity, topological score and interaction conservation score. In contrast to existing methods that generate multiple alignments in a greedy or progressive manner, our convex method optimizes alignments globally and enforces consistency among all pairwise alignments, resulting in much better alignment quality. Tested on both synthetic and real data, our experimental results show that ConvexAlign outperforms several popular methods in producing functionally coherent alignments. ConvexAlign even has a larger advantage over the others in aligning real PPI networks. ConvexAlign also finds a few conserved complexes among 5 species which cannot be detected by the other methods.
- Apr 12 2016 cs.CV arXiv:1604.02801v1We present an end-to-end system for reconstructing complete watertight and textured models of moving subjects such as clothed humans and animals, using only three or four handheld sensors. The heart of our framework is a new pairwise registration algorithm that minimizes, using a particle swarm strategy, an alignment error metric based on mutual visibility and occlusion. We show that this algorithm reliably registers partial scans with as little as 15% overlap without requiring any initial correspondences, and outperforms alternative global registration algorithms. This registration algorithm allows us to reconstruct moving subjects from free-viewpoint video produced by consumer-grade sensors, without extensive sensor calibration, constrained capture volume, expensive arrays of cameras, or templates of the subject geometry.
- Apr 01 2016 cs.CV arXiv:1603.09742v4Semantic segmentation is critical to image content understanding and object localization. Recent development in fully-convolutional neural network (FCN) has enabled accurate pixel-level labeling. One issue in previous works is that the FCN based method does not exploit the object boundary information to delineate segmentation details since the object boundary label is ignored in the network training. To tackle this problem, we introduce a double branch fully convolutional neural network, which separates the learning of the desirable semantic class labeling with mask-level object proposals guided by relabeled boundaries. This network, called object boundary guided FCN (OBG-FCN), is able to integrate the distinct properties of object shape and class features elegantly in a fully convolutional way with a designed masking architecture. We conduct experiments on the PASCAL VOC segmentation benchmark, and show that the end-to-end trainable OBG-FCN system offers great improvement in optimizing the target semantic segmentation quality.
- Mar 21 2016 cs.CV arXiv:1603.05930v1Graph based representation is widely used in visual tracking field by finding correct correspondences between target parts in consecutive frames. However, most graph based trackers consider pairwise geometric relations between local parts. They do not make full use of the target's intrinsic structure, thereby making the representation easily disturbed by errors in pairwise affinities when large deformation and occlusion occur. In this paper, we propose a geometric hypergraph learning based tracking method, which fully exploits high-order geometric relations among multiple correspondences of parts in consecutive frames. Then visual tracking is formulated as the mode-seeking problem on the hypergraph in which vertices represent correspondence hypotheses and hyperedges describe high-order geometric relations. Besides, a confidence-aware sampling method is developed to select representative vertices and hyperedges to construct the geometric hypergraph for more robustness and scalability. The experiments are carried out on two challenging datasets (VOT2014 and Deform-SOT) to demonstrate that the proposed method performs favorable against other existing trackers.
- Mar 01 2016 cs.SD arXiv:1602.08507v1In the past few years, several case studies have illustrated that the use of occupancy information in buildings leads to energy-efficient and low-cost HVAC operation. The widely presented techniques for occupancy estimation include temperature, humidity, CO2 concentration, image camera, motion sensor and passive infrared (PIR) sensor. So far little studies have been reported in literature to utilize audio and speech processing as indoor occupancy prediction technique. With rapid advances of audio and speech processing technologies, nowadays it is more feasible and attractive to integrate audio-based signal processing component into smart buildings. In this work, we propose to utilize audio processing techniques (i.e., speaker recognition and background audio energy estimation) to estimate room occupancy (i.e., the number of people inside a room). Theoretical analysis and simulation results demonstrate the accuracy and effectiveness of this proposed occupancy estimation technique. Based on the occupancy estimation, smart buildings will adjust the thermostat setups and HVAC operations, thus, achieving greater quality of service and drastic cost savings.
- Feb 25 2016 cs.NI arXiv:1602.07399v1In recent years, there has been an increasing number of information technologies utilized in buildings to advance the idea of "smart buildings". Among various potential techniques, the use of Wi-Fi based indoor positioning allows to locate and track smartphone users inside a building, therefore, location-aware intelligent solutions can be applied to control and of building operations. These location-aware indoor services (e.g., path finding, internet of things, location based advertising) demand real-time accurate indoor localization, which is a key issue to guarantee high quality of service in smart buildings. This paper presents a new Wi-Fi based indoor localization technique that achieves significantly improvement of indoor positioning accuracy with the help of Li-Fi assisted coefficient calibration. The proposed technique leverages indoor existing Li-Fi lighting and Wi-Fi infrastructure, and results in a cost-effective and user-convenient indoor accurate localization framework. In this work, experimental study and measurements are conducted to verify the performance of the proposed idea. The results substantiate the concept of refining Wi-Fi based indoor localization with Li-Fi assisted computation calibration.
- Feb 23 2016 cs.LG arXiv:1602.06586v5We consider the problem of accurately recovering a matrix B of size M by M , which represents a probability distribution over M2 outcomes, given access to an observed matrix of "counts" generated by taking independent samples from the distribution B. How can structural properties of the underlying matrix B be leveraged to yield computationally efficient and information theoretically optimal reconstruction algorithms? When can accurate reconstruction be accomplished in the sparse data regime? This basic problem lies at the core of a number of questions that are currently being considered by different communities, including building recommendation systems and collaborative filtering in the sparse data regime, community detection in sparse random graphs, learning structured models such as topic models or hidden Markov models, and the efforts from the natural language processing community to compute "word embeddings". Our results apply to the setting where B has a low rank structure. For this setting, we propose an efficient algorithm that accurately recovers the underlying M by M matrix using Theta(M) samples. This result easily translates to Theta(M) sample algorithms for learning topic models and learning hidden Markov Models. These linear sample complexities are optimal, up to constant factors, in an extremely strong sense: even testing basic properties of the underlying matrix (such as whether it has rank 1 or 2) requires Omega(M) samples. We provide an even stronger lower bound where distinguishing whether a sequence of observations were drawn from the uniform distribution over M observations versus being generated by an HMM with two hidden states requires Omega(M) observations. This precludes sublinear-sample hypothesis tests for basic properties, such as identity or uniformity, as well as sublinear sample estimators for quantities such as the entropy rate of HMMs.
- Learning deeper convolutional neural networks becomes a tendency in recent years. However, many empirical evidences suggest that performance improvement cannot be gained by simply stacking more layers. In this paper, we consider the issue from an information theoretical perspective, and propose a novel method Relay Backpropagation, that encourages the propagation of effective information through the network in training stage. By virtue of the method, we achieved the first place in ILSVRC 2015 Scene Classification Challenge. Extensive experiments on two challenging large scale datasets demonstrate the effectiveness of our method is not restricted to a specific dataset or network architecture. Our models will be available to the research community later.
- We present ShapeNet: a richly-annotated, large-scale repository of shapes represented by 3D CAD models of objects. ShapeNet contains 3D models from a multitude of semantic categories and organizes them under the WordNet taxonomy. It is a collection of datasets providing many semantic annotations for each 3D model such as consistent rigid alignments, parts and bilateral symmetry planes, physical sizes, keywords, as well as other planned annotations. Annotations are made available through a public web-based interface to enable data visualization of object attributes, promote data-driven geometric analysis, and provide a large-scale quantitative benchmark for research in computer graphics and vision. At the time of this technical report, ShapeNet has indexed more than 3,000,000 models, 220,000 models out of which are classified into 3,135 categories (WordNet synsets). In this report we describe the ShapeNet effort as a whole, provide details for all currently available datasets, and summarize future plans.
- Nov 25 2015 cs.CV arXiv:1511.07845v2Actions as simple as grasping an object or navigating around it require a rich understanding of that object's 3D shape from a given viewpoint. In this paper we repurpose powerful learning machinery, originally developed for object classification, to discover image cues relevant for recovering the 3D shape of potentially unfamiliar objects. We cast the problem as one of local prediction of surface normals and global detection of 3D reflection symmetry planes, which open the door for extrapolating occluded surfaces from visible ones. We demonstrate that our method is able to recover accurate 3D shape information for classes of objects it was not trained on, in both synthetic and real images.
- The second generation (2G) cellular networks are the current workhorse for machine-to-machine (M2M) communications. Diversity in 2G devices can be present both in form of multiple receive branches and blind repetitions. In presence of diversity, intersymbol interference (ISI) equalization and co-channel interference (CCI) suppression are usually very complex. In this paper, we consider the improvements for 2G devices with receive diversity. We derive a low-complexity receiver based on a channel shortening filter, which allows to sum up all diversity branches to a single stream after filtering while keeping the full diversity gain. The summed up stream is subsequently processed by a single stream Max-log-MAP (MLM) equalizer. The channel shortening filter is designed to maximize the mutual information lower bound (MILB) with the Ungerboeck detection model. Its filter coefficients can be obtained mainly by means of discrete-Fourier transforms (DFTs). Compared with the state-of-art homomorphic (HOM) filtering based channel shortener which cooperates with a delayed-decision feedback MLM (DDF-MLM) equalizer, the proposed MILB channel shortener has superior performance. Moreover, the equalization complexity, in terms of real-valued multiplications, is decreased by a factor that equals the number of diversity branches.
- We propose a deep learning approach for finding dense correspondences between 3D scans of people. Our method requires only partial geometric information in the form of two depth maps or partial reconstructed surfaces, works for humans in arbitrary poses and wearing any clothing, does not require the two people to be scanned from similar viewpoints, and runs in real time. We use a deep convolutional neural network to train a feature descriptor on depth map pixels, but crucially, rather than training the network to solve the shape correspondence problem directly, we train it to solve a body region classification problem, modified to increase the smoothness of the learned descriptors near region boundaries. This approach ensures that nearby points on the human body are nearby in feature space, and vice versa, rendering the feature descriptor suitable for computing dense correspondences between the scans. We validate our method on real and synthetic data for both clothed and unclothed humans, and show that our correspondences are more robust than is possible with state-of-the-art unsupervised methods, and more accurate than those found using methods that require full watertight 3D geometry.
- We present a general framework for studying the multilevel structure of lattice network coding (LNC), which serves as the theoretical fundamental for solving the ring-based LNC problem in practice, with greatly reduced decoding complexity. Building on the framework developed, we propose a novel lattice-based network coding solution, termed layered integer forcing (LIF), which applies to any lattices having multilevel structure. The theoretic foundations of the developed multilevel framework lead to a new general lattice construction approach, the elementary divisor construction (EDC), which shows its strength in improving the overall rate over multiple access channels (MAC) with low computational cost. We prove that the EDC lattices subsume the traditional complex construction approaches. Then a soft detector is developed for lattice network relaying, based on the multilevel structure of EDC. This makes it possible to employ iterative decoding in lattice network coding, and simulation results show the large potential of using iterative multistage decoding to approach the capacity.
- Sep 29 2015 cs.LG arXiv:1509.07943v1Super-resolution is the problem of recovering a superposition of point sources using bandlimited measurements, which may be corrupted with noise. This signal processing problem arises in numerous imaging problems, ranging from astronomy to biology to spectroscopy, where it is common to take (coarse) Fourier measurements of an object. Of particular interest is in obtaining estimation procedures which are robust to noise, with the following desirable statistical and computational properties: we seek to use coarse Fourier measurements (bounded by some cutoff frequency); we hope to take a (quantifiably) small number of measurements; we desire our algorithm to run quickly. Suppose we have k point sources in d dimensions, where the points are separated by at least ∆from each other (in Euclidean distance). This work provides an algorithm with the following favorable guarantees: - The algorithm uses Fourier measurements, whose frequencies are bounded by O(1/∆) (up to log factors). Previous algorithms require a cutoff frequency which may be as large as \Omega( d/∆). - The number of measurements taken by and the computational complexity of our algorithm are bounded by a polynomial in both the number of points k and the dimension d, with no dependence on the separation ∆. In contrast, previous algorithms depended inverse polynomially on the minimal separation and exponentially on the dimension for both of these quantities. Our estimation procedure itself is simple: we take random bandlimited measurements (as opposed to taking an exponential number of measurements on the hyper-grid). Furthermore, our analysis and algorithm are elementary (based on concentration bounds for sampling and the singular value decomposition).
- Aug 07 2015 cs.CV arXiv:1508.01244v3We study gaze estimation on tablets, our key design goal is uncalibrated gaze estimation using the front-facing camera during natural use of tablets, where the posture and method of holding the tablet is not constrained. We collected the first large unconstrained gaze dataset of tablet users, labeled Rice TabletGaze dataset. The dataset consists of 51 subjects, each with 4 different postures and 35 gaze locations. Subjects vary in race, gender and in their need for prescription glasses, all of which might impact gaze estimation accuracy. Driven by our observations on the collected data, we present a TabletGaze algorithm for automatic gaze estimation using multi-level HoG feature and Random Forests regressor. The TabletGaze algorithm achieves a mean error of 3.17 cm. We perform extensive evaluation on the impact of various factors such as dataset size, race, wearing glasses and user posture on the gaze estimation accuracy and make important observations about the impact of these factors.
- Mar 03 2015 cs.LG arXiv:1503.00424v2Efficiently learning mixture of Gaussians is a fundamental problem in statistics and learning theory. Given samples coming from a random one out of k Gaussian distributions in Rn, the learning problem asks to estimate the means and the covariance matrices of these Gaussians. This learning problem arises in many areas ranging from the natural sciences to the social sciences, and has also found many machine learning applications. Unfortunately, learning mixture of Gaussians is an information theoretically hard problem: in order to learn the parameters up to a reasonable accuracy, the number of samples required is exponential in the number of Gaussian components in the worst case. In this work, we show that provided we are in high enough dimensions, the class of Gaussian mixtures is learnable in its most general form under a smoothed analysis framework, where the parameters are randomly perturbed from an adversarial starting point. In particular, given samples from a mixture of Gaussians with randomly perturbed parameters, when n > \Omega(k^2), we give an algorithm that learns the parameters with polynomial running time and using polynomial number of samples. The central algorithmic ideas consist of new ways to decompose the moment tensor of the Gaussian mixture by exploiting its structural properties. The symmetries of this tensor are derived from the combinatorial structure of higher order moments of Gaussian distributions (sometimes referred to as Isserlis' theorem or Wick's theorem). We also develop new tools for bounding smallest singular values of structured random matrices, which could be useful in other smoothed analysis settings.
- Feb 25 2015 cs.GR arXiv:1502.06686v1Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.
- Dec 30 2014 cs.DS arXiv:1412.8164v1In this paper we investigate the top-$k$-selection problem, i.e. determine the largest, second largest, ..., and the $k$-th largest elements, in the dynamic data model. In this model the order of elements evolves dynamically over time. In each time step the algorithm can only probe the changes of data by comparing a pair of elements. Previously only two special cases were studied[2]: finding the largest element and the median; and sorting all elements. This paper systematically deals with $k\in [n]$ and solves the problem almost completely. Specifically, we identify a critical point $k^*$ such that the top-$k$-selection problem can be solved error-free with probability $1-o(1)$ if and only if $k=o(k^*)$. A lower bound of the error when $k=\Omega(k^*)$ is also determined, which actually is tight under some condition. On the other hand, it is shown that the top-$k$-set problem, which means finding the largest $k$ elements without sorting them, can be solved error-free for all $k\in [n]$. Additionally, we extend the dynamic data model and show that most of these results still hold.
- Nov 14 2014 cs.LG arXiv:1411.3698v2Consider a stationary discrete random process with alphabet size d, which is assumed to be the output process of an unknown stationary Hidden Markov Model (HMM). Given the joint probabilities of finite length strings of the process, we are interested in finding a finite state generative model to describe the entire process. In particular, we focus on two classes of models: HMMs and quasi-HMMs, which is a strictly larger class of models containing HMMs. In the main theorem, we show that if the random process is generated by an HMM of order less or equal than k, and whose transition and observation probability matrix are in general position, namely almost everywhere on the parameter space, both the minimal quasi-HMM realization and the minimal HMM realization can be efficiently computed based on the joint probabilities of all the length N strings, for N > 4 lceil log_d(k) rceil +1. In this paper, we also aim to compare and connect the two lines of literature: realization theory of HMMs, and the recent development in learning latent variable models with tensor decomposition techniques.
- Nov 04 2014 cs.DB arXiv:1411.0064v1Detecting dominant clusters is important in many analytic applications. The state-of-the-art methods find dense subgraphs on the affinity graph as the dominant clusters. However, the time and space complexity of those methods are dominated by the construction of the affinity graph, which is quadratic with respect to the number of data points, and thus impractical on large data sets. To tackle the challenge, in this paper, we apply Evolutionary Game Theory (EGT) and develop a scalable algorithm, Approximate Localized Infection Immunization Dynamics (ALID). The major idea is to perform Localized Infection Immunization Dynamics (LID) to find dense subgraph within local range of the affinity graph. LID is further scaled up with guaranteed high efficiency and detection quality by an estimated Region of Interest (ROI) and a carefully designed Candidate Infective Vertex Search method (CIVS). ALID only constructs small local affinity graphs and has a time complexity of O(C(a^*+ \delta)n) and a space complexity of O(a^*(a^*+ \delta)), where a^* is the size of the largest dominant cluster and C << n and \delta << n are small constants. We demonstrate by extensive experiments on both synthetic data and real world data that ALID achieves state-of-the-art detection quality with much lower time and space cost on single machine. We also demonstrate the encouraging parallelization performance of ALID by implementing the Parallel ALID (PALID) on Apache Spark. PALID processes 50 million SIFT data points in 2.29 hours, achieving a speedup ratio of 7.51 with 8 executors.
- Deeply rooted in classical social choice and voting theory, statistical ranking with paired comparison data experienced its renaissance with the wide spread of crowdsourcing technique. As the data quality might be significantly damaged in an uncontrolled crowdsourcing environment, outlier detection and robust ranking have become a hot topic in such data analysis. In this paper, we propose a robust ranking framework based on the principle of Huber's robust statistics, which formulates outlier detection as a LASSO problem to find sparse approximations of the cyclic ranking projection in Hodge decomposition. Moreover, simple yet scalable algorithms are developed based on Linearized Bregman Iteration to achieve an even less biased estimator than LASSO. Statistical consistency of outlier detection is established in both cases which states that when the outliers are strong enough and in Erdos-Renyi random graph sampling settings, outliers can be faithfully detected. Our studies are supported by experiments with both simulated examples and real-world data. The proposed framework provides us a promising tool for robust ranking with large scale crowdsourcing data arising from computer vision, multimedia, machine learning, sociology, etc.
- Maximum a posteriori (MAP) inference over discrete Markov random fields is a fundamental task spanning a wide spectrum of real-world applications, which is known to be NP-hard for general graphs. In this paper, we propose a novel semidefinite relaxation formulation (referred to as SDR) to estimate the MAP assignment. Algorithmically, we develop an accelerated variant of the alternating direction method of multipliers (referred to as SDPAD-LR) that can effectively exploit the special structure of the new relaxation. Encouragingly, the proposed procedure allows solving SDR for large-scale problems, e.g., problems on a grid graph comprising hundreds of thousands of variables with multiple states per node. Compared with prior SDP solvers, SDPAD-LR is capable of attaining comparable accuracy while exhibiting remarkably improved scalability, in contrast to the commonly held belief that semidefinite relaxation can only been applied on small-scale MRF problems. We have evaluated the performance of SDR on various benchmark datasets including OPENGM2 and PIC in terms of both the quality of the solutions and computation time. Experimental results demonstrate that for a broad class of problems, SDPAD-LR outperforms state-of-the-art algorithms in producing better MAP assignment in an efficient manner.
- Apr 14 2014 cs.AR arXiv:1404.3162v1In this paper, we present a novel signal processing unit built upon the theory of factor graphs, which is able to address a wide range of signal processing algorithms. More specifically, the demonstrated factor graph processor (FGP) is tailored to Gaussian message passing algorithms. We show how to use a highly configurable systolic array to solve the message update equations of nodes in a factor graph efficiently. A proper instruction set and compilation procedure is presented. In a recursive least squares channel estimation example we show that the FGP can compute a message update faster than a state-ofthe- art DSP. The results demonstrate the usabilty of the FGP architecture as a flexible HW accelerator for signal-processing and communication systems.
- Joint matching over a collection of objects aims at aggregating information from a large collection of similar instances (e.g. images, graphs, shapes) to improve maps between pairs of them. Given multiple matches computed between a few object pairs in isolation, the goal is to recover an entire collection of maps that are (1) globally consistent, and (2) close to the provided maps --- and under certain conditions provably the ground-truth maps. Despite recent advances on this problem, the best-known recovery guarantees are limited to a small constant barrier --- none of the existing methods find theoretical support when more than $50\%$ of input correspondences are corrupted. Moreover, prior approaches focus mostly on fully similar objects, while it is practically more demanding to match instances that are only partially similar to each other. In this paper, we develop an algorithm to jointly match multiple objects that exhibit only partial similarities, given a few pairwise matches that are densely corrupted. Specifically, we propose to recover the ground-truth maps via a parameter-free convex program called MatchLift, following a spectral method that pre-estimates the total number of distinct elements to be matched. Encouragingly, MatchLift exhibits near-optimal error-correction ability, i.e. in the asymptotic regime it is guaranteed to work even when a dominant fraction $1-\Theta\left(\frac{\log^{2}n}{\sqrt{n}}\right)$ of the input maps behave like random outliers. Furthermore, MatchLift succeeds with minimal input complexity, namely, perfect matching can be achieved as soon as the provided maps form a connected map graph. We evaluate the proposed algorithm on various benchmark data sets including synthetic examples and real-world examples, all of which confirm the practical applicability of MatchLift.