results for au:Hofmann_T in:cs

- We propose a novel data-dependent structured gradient regularizer to increase the robustness of neural networks vis-a-vis adversarial perturbations. Our regularizer can be derived as a controlled approximation from first principles, leveraging the fundamental link between training with noise and regularization. It adds very little computational overhead during learning and is simple to implement generically in standard deep learning frameworks. Our experiments provide strong evidence that structured gradient regularization can act as an effective first line of defense against attacks based on low-level signal corruption.
- Gradient-based optimization methods are the most popular choice for finding local optima for classical minimization and saddle point problems. Here, we highlight a systemic issue of gradient dynamics that arise for saddle point problems, namely the presence of undesired stable stationary points that are no local optima. We propose a novel optimization approach that exploits curvature information in order to escape from these undesired stationary points. We prove that different optimization methods, including gradient method and adagrad, equipped with curvature exploitation can escape non-optimal stationary points. We also provide empirical results on common saddle point problems which confirm the advantage of using curvature exploitation.
- Learning graph representations via low-dimensional embeddings that preserve relevant network properties is an important class of problems in machine learning. We here present a novel method to embed directed acyclic graphs. Following prior work, we first advocate for using hyperbolic spaces which provably model tree-like structures better than Euclidean geometry. Second, we view hierarchical relations as partial orders defined using a family of nested geodesically convex cones. We prove that these entailment cones admit an optimal shape with a closed form expression both in the Euclidean and hyperbolic spaces. Moreover, they canonically define the embedding learning process. Experiments show significant improvements of our method over strong recent baselines both in terms of representational capacity and generalization.
- Mar 19 2018 cs.LG arXiv:1803.05999v1We analyze the variance of stochastic gradients along negative curvature directions in certain non-convex machine learning models and show that stochastic gradients exhibit a strong component along these directions. Furthermore, we show that - contrary to the case of isotropic noise - this variance is proportional to the magnitude of the corresponding eigenvalues and not decreasing in the dimensionality. Based upon this observation we propose a new assumption under which we show that the injection of explicit, isotropic noise usually applied to make gradient descent escape saddle points can successfully be replaced by a simple SGD step. Additionally - and under the same condition - we derive the first convergence rate for plain SGD to a second-order stationary point in a number of iterations that is independent of the problem dimension.
- Black-Box attacks on machine learning models occur when an attacker, despite having no access to the inner workings of a model, can successfully craft an attack by means of model theft. The attacker will train an own substitute model that mimics the model to be attacked. The substitute can then be used to design attacks against the original model, for example by means of adversarial samples. We put ourselves in the shoes of the defender and present a method that can successfully avoid model theft by mounting a counter-attack. Specifically, to any incoming query, we slightly perturb our output label distribution in a way that makes substitute training infeasible. We demonstrate that the perturbation does not affect the ordinary use of our model, but results in an effective defense against attacks based on model theft.
- It is commonly agreed that the use of relevant invariances as a good statistical bias is important in machine-learning. However, most approaches that explicitly incorporate invariances into a model architecture only make use of very simple transformations, such as translations and rotations. Hence, there is a need for methods to model and extract richer transformations that capture much higher-level invariances. To that end, we introduce a tool allowing to parametrize the set of filters of a trained convolutional neural network with the latent space of a generative adversarial network. We then show that the method can capture highly non-linear invariances of the data by visualizing their effect in the data space.
- In implicit models, one often interpolates between sampled points in latent space. As we show in this paper, care needs to be taken to match-up the distributional assumptions on code vectors with the geometry of the interpolating paths. Otherwise, typical assumptions about the quality and semantics of in-between points may not be justified. Based on our analysis we propose to modify the prior code distribution to put significantly more probability mass closer to the origin. As a result, linear interpolation paths are not only shortest paths, but they are also guaranteed to pass through high-density regions, irrespective of the dimensionality of the latent space. Experiments on standard benchmark image datasets demonstrate clear visual improvements in the quality of the generated samples and exhibit more meaningful interpolation paths.
- We consider the problem of training generative models with deep neural networks as generators, i.e. to map latent codes to data points. Whereas the dominant paradigm combines simple priors over codes with complex deterministic models, we argue that it might be advantageous to use more flexible code distributions. We demonstrate how these distributions can be induced directly from the data. The benefits include: more powerful generative models, better modeling of latent structure and explicit control of the degree of generalization.
- We consider the problem of training generative models with deep neural networks as generators, i.e. to map latent codes to data points. Whereas the dominant paradigm combines simple priors over codes with complex deterministic models, we propose instead to use more flexible code distributions. These distributions are estimated non-parametrically by reversing the generator map during training. The benefits include: more powerful generative models, better modeling of latent structure and explicit control of the degree of generalization.
- Jul 24 2017 cs.CV arXiv:1707.06879v1This study deals with semantic segmentation of high-resolution (aerial) images where a semantic class label is assigned to each pixel via supervised classification as a basis for automatic map generation. Recently, deep convolutional neural networks (CNNs) have shown impressive performance and have quickly become the de-facto standard for semantic segmentation, with the added benefit that task-specific feature design is no longer necessary. However, a major downside of deep learning methods is that they are extremely data-hungry, thus aggravating the perennial bottleneck of supervised classification, to obtain enough annotated training data. On the other hand, it has been observed that they are rather robust against noise in the training labels. This opens up the intriguing possibility to avoid annotating huge amounts of training data, and instead train the classifier from existing legacy data or crowd-sourced maps which can exhibit high levels of noise. The question addressed in this paper is: can training with large-scale, publicly available labels replace a substantial part of the manual labeling effort and still achieve sufficient performance? Such data will inevitably contain a significant portion of errors, but in return virtually unlimited quantities of it are available in larger parts of the world. We adapt a state-of-the-art CNN architecture for semantic segmentation of buildings and roads in aerial images, and compare its performance when using different training data sets, ranging from manually labeled, pixel-accurate ground truth of the same city to automatic training data derived from OpenStreetMap data from distant locations. We report our results that indicate that satisfying performance can be obtained with significantly less manual annotation effort, by exploiting noisy large-scale training data.
- Jun 14 2017 cs.LG arXiv:1706.03958v1Gradient descent and coordinate descent are well understood in terms of their asymptotic behavior, but less so in a transient regime often used for approximations in machine learning. We investigate how proper initialization can have a profound effect on finding near-optimal solutions quickly. We show that a certain property of a data set, namely the boundedness of the correlations between eigenfeatures and the response variable, can lead to faster initial progress than expected by commonplace analysis. Convex optimization problems can tacitly benefit from that, but this automatism does not apply to their dual formulation. We analyze this phenomenon and devise provably good initialization strategies for dual optimization as well as heuristics for the non-convex case, relevant for deep learning. We find our predictions and methods to be experimentally well-supported.
- We consider the problem of training generative models with a Generative Adversarial Network (GAN). Although GANs can accurately model complex distributions, they are known to be difficult to train due to instabilities caused by a difficult minimax optimization problem. In this paper, we view the problem of training GANs as finding a mixed strategy in a zero-sum game. Building on ideas from online learning we propose a novel training method named Chekhov GAN 1 . On the theory side, we show that our method provably converges to an equilibrium for semi-shallow GAN architectures, i.e. architectures where the discriminator is a one layer network and the generator is arbitrary. On the practical side, we develop an efficient heuristic guided by our theoretical results, which we apply to commonly used deep GAN architectures. On several real world tasks our approach exhibits improved stability and performance compared to standard GAN training.
- Deep generative models based on Generative Adversarial Networks (GANs) have demonstrated impressive sample quality but in order to work they require a careful choice of architecture, parameter initialization, and selection of hyper-parameters. This fragility is in part due to a dimensional mismatch or non-overlapping support between the model distribution and the data distribution, causing their density ratio and the associated f-divergence to be undefined. We overcome this fundamental limitation and propose a new regularization approach with low computational cost that yields a stable GAN training procedure. We demonstrate the effectiveness of this regularizer across several architectures trained on common benchmark image generation tasks. Our regularization turns GAN models into reliable building blocks for deep learning.
- We introduce two new packages, Nemo and Hecke, written in the Julia programming language for computer algebra and number theory. We demonstrate that high performance generic algorithms can be implemented in Julia, without the need to resort to a low-level C implementation. For specialised algorithms, we use Julia's efficient native C interface to wrap existing C/C++ libraries such as Flint, Arb, Antic and Singular. We give examples of how to use Hecke and Nemo and discuss some algorithms that we have implemented to provide high performance basic arithmetic.
- Apr 18 2017 cs.CL arXiv:1704.04920v3We propose a novel deep learning model for joint document-level entity disambiguation, which leverages learned neural representations. Key components are entity embeddings, a neural attention mechanism over local context windows, and a differentiable joint inference stage for disambiguation. Our approach thereby combines benefits of deep learning with more traditional approaches such as graphical models and probabilistic mention-entity maps. Extensive experiments show that we are able to obtain competitive or state-of-the-art accuracy at moderate computational costs.
- This paper presents a novel approach for multi-lingual sentiment classification in short texts. This is a challenging task as the amount of training data in languages other than English is very limited. Previously proposed multi-lingual approaches typically require to establish a correspondence to English for which powerful classifiers are already available. In contrast, our method does not require such supervision. We leverage large amounts of weakly-supervised data in various languages to train a multi-layer convolutional network and demonstrate the importance of using pre-training of such networks. We thoroughly evaluate our approach on various multi-lingual datasets, including the recent SemEval-2016 sentiment prediction benchmark (Task 4), where we achieved state-of-the-art performance. We also compare the performance of our model trained individually for each language to a variant trained for all languages at once. We show that the latter model reaches slightly worse - but still acceptable - performance when compared to the single language model, while benefiting from better generalization properties across languages.
- We present a variation of the modular algorithm for computing the Hermite normal form of an $\mathcal O_K$-module presented by Cohen, where $\mathcal O_K$ is the ring of integers of a number field $K$. An approach presented in (Cohen 1996) based on reductions modulo ideals was conjectured to run in polynomial time by Cohen, but so far, no such proof was available in the literature. In this paper, we present a modification of the approach of Cohen to prevent the coefficient swell and we rigorously assess its complexity with respect to the size of the input and the invariants of the field $K$.
- We develop algorithms to turn quotients of rings of rings of integers into effective Euclidean rings by giving polynomial algorithms for all fundamental ring operations. In addition, we study normal forms for modules over such rings and their behavior under certain quotients. We illustrate the power of our ideas in a new modular normal form algorithm for modules over rings of integers, vastly outperforming classical algorithms.
- Nov 17 2016 cs.CV arXiv:1611.05321v3State-of-the-art approaches for image captioning require supervised training data consisting of captions with paired image data. These methods are typically unable to use unsupervised data such as textual data with no corresponding images, which is a much more abundant commodity. We here propose a novel way of using such textual data by artificially generating missing visual information. We evaluate this learning approach on a newly designed model that detects visual concepts present in an image and feed them to a reviewer-decoder architecture with an attention mechanism. Unlike previous approaches that encode visual concepts using word embeddings, we instead suggest using regional image features which capture more intrinsic information. The main benefit of this architecture is that it synthesizes meaningful thought vectors that capture salient image properties and then applies a soft attentive decoder to decode the thought vectors and generate image captions. We evaluate our model on both Microsoft COCO and Flickr30K datasets and demonstrate that this model combined with our semi-supervised learning method can largely improve performance and help the model to generate more accurate and diverse captions.
- Most existing machine translation systems operate at the level of words, relying on explicit segmentation to extract tokens. We introduce a neural machine translation (NMT) model that maps a source character sequence to a target character sequence without any segmentation. We employ a character-level convolutional network with max-pooling at the encoder to reduce the length of source representation, allowing the model to be trained at a speed comparable to subword-level models while capturing local regularities. Our character-to-character model outperforms a recently proposed baseline with a subword-level encoder on WMT'15 DE-EN and CS-EN, and gives comparable performance on FI-EN and RU-EN. We then demonstrate that it is possible to share a single character-level encoder across multiple languages by training a model on a many-to-one translation task. In this multilingual setting, the character-level encoder significantly outperforms the subword-level encoder on all the language pairs. We observe that on CS-EN, FI-EN and RU-EN, the quality of the multilingual character-level translation even surpasses the models specifically trained on that language pair alone, both in terms of BLEU score and human judgment.
- May 24 2016 cs.LG arXiv:1605.06561v1Newton's method is a fundamental technique in optimization with quadratic convergence within a neighborhood around the optimum. However reaching this neighborhood is often slow and dominates the computational costs. We exploit two properties specific to empirical risk minimization problems to accelerate Newton's method, namely, subsampling training data and increasing strong convexity through regularization. We propose a novel continuation method, where we define a family of objectives over increasing sample sizes and with decreasing regularization strength. Solutions on this path are tracked such that the minimizer of the previous objective is guaranteed to be within the quadratic convergence region of the next objective to be optimized. Thereby every Newton iteration is guaranteed to achieve super-linear contractions with regard to the chosen objective, which becomes a moving target. We provide a theoretical analysis that motivates our algorithm, called DynaNewton, and characterizes its speed of convergence. Experiments on a wide range of data sets and problems consistently confirm the predicted computational savings.
- Mar 10 2016 cs.LG arXiv:1603.02839v2For many machine learning problems, data is abundant and it may be prohibitive to make multiple passes through the full training set. In this context, we investigate strategies for dynamically increasing the effective sample size, when using iterative methods such as stochastic gradient descent. Our interest is motivated by the rise of variance-reduced methods, which achieve linear convergence rates that scale favorably for smaller sample sizes. Exploiting this feature, we show -- theoretically and empirically -- how to obtain significant speed-ups with a novel algorithm that reaches statistical accuracy on an $n$-sample in $2n$, instead of $n \log n$ steps.
- Urban environments develop complex, non-obvious structures that are often hard to represent in the form of maps or guides. Finding the right place to go often requires intimate familiarity with the location in question and cannot easily be deduced by visitors. In this work, we exploit large-scale samples of usage information, in the form of mobile phone traces and geo-tagged Twitter messages in order to automatically explore and annotate city maps via kernel density estimation. Our experiments are based on one year's worth of mobile phone activity collected by Nokia's Mobile Data Challenge (MDC). We show that usage information can be a strong predictor of semantic place categories, allowing us to automatically annotate maps based on the behavior of the local user base.
- Sep 09 2015 cs.CL arXiv:1509.02301v3Many fundamental problems in natural language processing rely on determining what entities appear in a given text. Commonly referenced as entity linking, this step is a fundamental component of many NLP tasks such as text understanding, automatic summarization, semantic search or machine translation. Name ambiguity, word polysemy, context dependencies and a heavy-tailed distribution of entities contribute to the complexity of this problem. We here propose a probabilistic approach that makes use of an effective graphical model to perform collective entity disambiguation. Input mentions (i.e.,~linkable token spans) are disambiguated jointly across an entire document by combining a document-level prior of entity co-occurrences with local information captured from mentions and their surrounding context. The model is based on simple sufficient statistics extracted from data, thus relying on few parameters to be learned. Our method does not require extensive feature engineering, nor an expensive training procedure. We use loopy belief propagation to perform approximate inference. The low complexity of our model makes this step sufficiently fast for real-time usage. We demonstrate the accuracy of our approach on a wide range of benchmark datasets, showing that it matches, and in many cases outperforms, existing state-of-the-art methods.
- Stochastic Gradient Descent (SGD) is a workhorse in machine learning, yet its slow convergence can be a computational bottleneck. Variance reduction techniques such as SAG, SVRG and SAGA have been proposed to overcome this weakness, achieving linear convergence. However, these methods are either based on computations of full gradients at pivot points, or on keeping per data point corrections in memory. Therefore speed-ups relative to SGD may need a minimal number of epochs in order to materialize. This paper investigates algorithms that can exploit neighborhood structure in the training data to share and re-use information about past stochastic gradients across data points, which offers advantages in the transient optimization phase. As a side-product we provide a unified convergence analysis for a family of variance reduction algorithms, which we call memorization algorithms. We provide experimental results supporting our theory.
- Mar 31 2015 cs.LG arXiv:1503.08316v4Quasi-Newton methods are widely used in practise for convex loss minimization problems. These methods exhibit good empirical performance on a wide variety of tasks and enjoy super-linear convergence to the optimal solution. For large-scale learning problems, stochastic Quasi-Newton methods have been recently proposed. However, these typically only achieve sub-linear convergence rates and have not been shown to consistently perform well in practice since noisy Hessian approximations can exacerbate the effect of high-variance stochastic gradient estimates. In this work we propose Vite, a novel stochastic Quasi-Newton algorithm that uses an existing first-order technique to reduce this variance. Without exploiting the specific form of the approximate Hessian, we show that Vite reaches the optimum at a geometric rate with a constant step-size when dealing with smooth strongly convex functions. Empirically, we demonstrate improvements over existing stochastic Quasi-Newton and variance reduced stochastic gradient methods.
- Communication remains the most significant bottleneck in the performance of distributed optimization algorithms for large-scale machine learning. In this paper, we propose a communication-efficient framework, CoCoA, that uses local computation in a primal-dual setting to dramatically reduce the amount of necessary communication. We provide a strong convergence rate analysis for this class of algorithms, as well as experiments on real-world distributed datasets with implementations in Spark. In our experiments, we find that as compared to state-of-the-art mini-batch versions of SGD and SDCA algorithms, CoCoA converges to the same .001-accurate solution quality on average 25x as quickly.
- Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two-mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Semantic Analysis which stems from linear algebra and performs a Singular Value Decomposition of co-occurrence tables, the proposed method is based on a mixture decomposition derived from a latent class model. This results in a more principled approach which has a solid foundation in statistics. In order to avoid overfitting, we propose a widely applicable generalization of maximum likelihood model fitting by tempered EM. Our approach yields substantial and consistent improvements over Latent Semantic Analysis in a number of experiments.
- In this paper we de ne conditional random elds in reproducing kernel Hilbert spaces and show connections to Gaussian Process classi cation. More speci cally, we prove decomposition results for undirected graphical models and we give constructions for kernels. Finally we present e cient means of solving the optimization problem using reduced rank decompositions and we show how stationarity can be exploited e ciently in the optimization process.