results for au:Hayden_P in:cs

- We establish that, in an appropriate limit, qubits of communication should be regarded as composite resources, decomposing cleanly into independent correlation and transmission components. Because qubits of communication can establish ebits of entanglement, qubits are more powerful resources than ebits. We identify a new communications resource, the zero-bit, which is precisely half the gap between them, replacing classical bits by zero-bits makes teleportation asymptotically reversible. The decomposition of a qubit into an ebit and two zero-bits has wide-ranging consequences including applications to state merging, the quantum channel capacity, entanglement distillation, quantum identification and remote state preparation. The source of these results is the theory of approximate quantum error correction. The action of a quantum channel is reversible if and only if no information is leaked to the environment, a characterization that is useful even in approximate form. However, different notions of approximation lead to qualitatively different forms of quantum error correction in the limit of large dimension. We study the effect of a constraint on the dimension of the reference system when considering information leakage. While the resulting condition fails to ensure that the entire input can be corrected, it does ensure that all subspaces of dimension matching that of the reference are correctable. The size of the reference can be characterized by a parameter $\alpha$, we call the associated resource an $\alpha$-bit. Changing $\alpha$ interpolates between standard quantum error correction and quantum identification, a form of equality testing for quantum states. We develop the theory of $\alpha$-bits, including the applications above, and determine the $\alpha$-bit capacity of general quantum channels, finding single-letter formulas for the entanglement-assisted and amortised variants.
- We identify a formal connection between physical problems related to the detection of separable (unentangled) quantum states and complexity classes in theoretical computer science. In particular, we show that to nearly every quantum interactive proof complexity class (including BQP, QMA, QMA(2), and QSZK), there corresponds a natural separability testing problem that is complete for that class. Of particular interest is the fact that the problem of determining whether an isometry can be made to produce a separable state is either QMA-complete or QMA(2)-complete, depending upon whether the distance between quantum states is measured by the one-way LOCC norm or the trace norm. We obtain strong hardness results by proving that for each n-qubit maximally entangled state there exists a fixed one-way LOCC measurement that distinguishes it from any separable state with error probability that decays exponentially in n.
- The locking effect is a phenomenon which is unique to quantum information theory and represents one of the strongest separations between the classical and quantum theories of information. The Fawzi-Hayden-Sen (FHS) locking protocol harnesses this effect in a cryptographic context, whereby one party can encode n bits into n qubits while using only a constant-size secret key. The encoded message is then secure against any measurement that an eavesdropper could perform in an attempt to recover the message, but the protocol does not necessarily meet the composability requirements needed in quantum key distribution applications. In any case, the locking effect represents an extreme violation of Shannon's classical theorem, which states that information-theoretic security holds in the classical case if and only if the secret key is the same size as the message. Given this intriguing phenomenon, it is of practical interest to study the effect in the presence of noise, which can occur in the systems of both the legitimate receiver and the eavesdropper. This paper formally defines the locking capacity of a quantum channel as the maximum amount of locked information that can be reliably transmitted to a legitimate receiver by exploiting many independent uses of a quantum channel and an amount of secret key sublinear in the number of channel uses. We provide general operational bounds on the locking capacity in terms of other well-known capacities from quantum Shannon theory. We also study the important case of bosonic channels, finding limitations on these channels' locking capacity when coherent-state encodings are employed and particular locking protocols for these channels that might be physically implementable.
- Known strategies for sending bits at the capacity rate over a general channel with classical input and quantum output (a cq channel) require the decoder to implement impractically complicated collective measurements. Here, we show that a fully collective strategy is not necessary in order to recover all of the information bits. In fact, when coding for a large number N uses of a cq channel W, N I(W_acc) of the bits can be recovered by a non-collective strategy which amounts to coherent quantum processing of the results of product measurements, where I(W_acc) is the accessible information of the channel W. In order to decode the other N (I(W) - I(W_acc)) bits, where I(W) is the Holevo rate, our conclusion is that the receiver should employ collective measurements. We also present two other results: 1) collective Fuchs-Caves measurements (quantum likelihood ratio measurements) can be used at the receiver to achieve the Holevo rate and 2) we give an explicit form of the Helstrom measurements used in small-size polar codes. The main approach used to demonstrate these results is a quantum extension of Arikan's polar codes.
- Suppose that a polynomial-time mixed-state quantum circuit, described as a sequence of local unitary interactions followed by a partial trace, generates a quantum state shared between two parties. One might then wonder, does this quantum circuit produce a state that is separable or entangled? Here, we give evidence that it is computationally hard to decide the answer to this question, even if one has access to the power of quantum computation. We begin by exhibiting a two-message quantum interactive proof system that can decide the answer to a promise version of the question. We then prove that the promise problem is hard for the class of promise problems with "quantum statistical zero knowledge" (QSZK) proof systems by demonstrating a polynomial-time Karp reduction from the QSZK-complete promise problem "quantum state distinguishability" to our quantum separability problem. By exploiting Knill's efficient encoding of a matrix description of a state into a description of a circuit to generate the state, we can show that our promise problem is NP-hard with respect to Cook reductions. Thus, the quantum separability problem (as phrased above) constitutes the first nontrivial promise problem decidable by a two-message quantum interactive proof system while being hard for both NP and QSZK. We also consider a variant of the problem, in which a given polynomial-time mixed-state quantum circuit accepts a quantum state as input, and the question is to decide if there is an input to this circuit which makes its output separable across some bipartite cut. We prove that this problem is a complete promise problem for the class QIP of problems decidable by quantum interactive proof systems. Finally, we show that a two-message quantum interactive proof system can also decide a multipartite generalization of the quantum separability problem.
- Recent work has precisely characterized the achievable trade-offs between three key information processing tasks---classical communication (generation or consumption), quantum communication (generation or consumption), and shared entanglement (distribution or consumption), measured in bits, qubits, and ebits per channel use, respectively. Slices and corner points of this three-dimensional region reduce to well-known protocols for quantum channels. A trade-off coding technique can attain any point in the region and can outperform time-sharing between the best-known protocols for accomplishing each information processing task by itself. Previously, the benefits of trade-off coding that had been found were too small to be of practical value (viz., for the dephasing and the universal cloning machine channels). In this letter, we demonstrate that the associated performance gains are in fact remarkably high for several physically relevant bosonic channels that model free-space / fiber-optic links, thermal-noise channels, and amplifiers. We show that significant performance gains from trade-off coding also apply when trading photon-number resources between transmitting public and private classical information simultaneously over secret-key-assisted bosonic channels.
- Winter's measurement compression theorem stands as one of the most penetrating insights of quantum information theory (QIT). In addition to making an original and profound statement about measurement in quantum theory, it also underlies several other general protocols in QIT. In this paper, we provide a full review of Winter's measurement compression theorem, detailing the information processing task, giving examples for understanding it, reviewing Winter's achievability proof, and detailing a new approach to its single-letter converse theorem. We prove an extension of the theorem to the case in which the sender is not required to receive the outcomes of the simulated measurement. The total cost of common randomness and classical communication can be lower for such a "non-feedback" simulation, and we prove a single-letter converse theorem demonstrating optimality. We then review the Devetak-Winter theorem on classical data compression with quantum side information, providing new proofs of its achievability and converse parts. From there, we outline a new protocol that we call "measurement compression with quantum side information," announced previously by two of us in our work on triple trade-offs in quantum Shannon theory. This protocol has several applications, including its part in the "classically-assisted state redistribution" protocol, which is the most general protocol on the static side of the quantum information theory tree, and its role in reducing the classical communication cost in a task known as local purity distillation. We also outline a connection between measurement compression with quantum side information and recent work on entropic uncertainty relations in the presence of quantum memory. Finally, we prove a single-letter theorem characterizing measurement compression with quantum side information when the sender is not required to obtain the measurement outcome.
- The trade-off capacity region of a quantum channel characterizes the optimal net rates at which a sender can communicate classical, quantum, and entangled bits to a receiver by exploiting many independent uses of the channel, along with the help of the same resources. Similarly, one can consider a trade-off capacity region when the noiseless resources are public, private, and secret key bits. In [Phys. Rev. Lett. 108, 140501 (2012)], we identified these trade-off rate regions for the pure-loss bosonic channel and proved that they are optimal provided that a longstanding minimum output entropy conjecture is true. Additionally, we showed that the performance gains of a trade-off coding strategy when compared to a time-sharing strategy can be quite significant. In the present paper, we provide detailed derivations of the results announced there, and we extend the application of these ideas to thermalizing and amplifying bosonic channels. We also derive a "rule of thumb" for trade-off coding, which determines how to allocate photons in a coding strategy if a large mean photon number is available at the channel input. Our results on the amplifying bosonic channel also apply to the "Unruh channel" considered in the context of relativistic quantum information theory.
- The discrete memoryless interference channel is modelled as a conditional probability distribution with two outputs depending on two inputs and has widespread applications in practical communication scenarios. In this paper, we introduce and study the quantum interference channel, a generalization of a two-input, two-output memoryless channel to the setting of quantum Shannon theory. We discuss three different coding strategies and obtain corresponding achievable rate regions for quantum interference channels. We calculate the capacity regions in the special cases of "very strong" and "strong" interference. The achievability proof in the case of "strong" interference exploits a novel quantum simultaneous decoder for two-sender quantum multiple access channels. We formulate a conjecture regarding the existence of a quantum simultaneous decoder in the three-sender case and use it to state the rates achievable by a quantum Han-Kobayashi strategy.
- Calculating the capacity of interference channels is a notorious open problem in classical information theory. Such channels have two senders and two receivers, and each sender would like to communicate with a partner receiver. The capacity of such channels is known exactly in the settings of "very strong" and "strong" interference, while the Han-Kobayashi coding strategy gives the best known achievable rate region in the general case. Here, we introduce and study the quantum interference channel, a natural generalization of the interference channel to the setting of quantum information theory. We restrict ourselves for the most part to channels with two classical inputs and two quantum outputs in order to simplify the presentation of our results (though generalizations of our results to channels with quantum inputs are straightforward). We are able to determine the exact classical capacity of this channel in the settings of "very strong" and "strong" interference, by exploiting Winter's successive decoding strategy and a novel two-sender quantum simultaneous decoder, respectively. We provide a proof that a Han-Kobayashi strategy is achievable with Holevo information rates, up to a conjecture regarding the existence of a three-sender quantum simultaneous decoder. This conjecture holds for a special class of quantum multiple access channels with average output states that commute, and we discuss some other variations of the conjecture that hold. Finally, we detail a connection between the quantum interference channel and prior work on the capacity of bipartite unitary gates.
- Motivated by the problem of designing quantum repeaters, we study entanglement distillation between two parties, Alice and Bob, starting from a mixed state and with the help of "repeater" stations. To treat the case of a single repeater, we extend the notion of entanglement of assistance to arbitrary mixed tripartite states and exhibit a protocol, based on a random coding strategy, for extracting pure entanglement. The rates achievable by this protocol formally resemble those achievable if the repeater station could merge its state to one of Alice and Bob even when such merging is impossible. This rate is provably better than the hashing bound for sufficiently pure tripartite states. We also compare our assisted distillation protocol to a hierarchical strategy consisting of entanglement distillation followed by entanglement swapping. We demonstrate by the use of a simple example that our random measurement strategy outperforms hierarchical distillation strategies when the individual helper stations' states fail to individually factorize into portions associated specifically with Alice and Bob. Finally, we use these results to find achievable rates for the more general scenario, where many spatially separated repeaters help two recipients distill entanglement.
- We present a protocol for performing state merging when multiple parties share a single copy of a mixed state, and analyze the entanglement cost in terms of min- and max-entropies. Our protocol allows for interpolation between corner points of the rate region without the need for time-sharing, a primitive which is not available in the one-shot setting. We also compare our protocol to the more naive strategy of repeatedly applying a single-party merging protocol one party at a time, by performing a detailed analysis of the rates required to merge variants of the embezzling states. Finally, we analyze a variation of multiparty merging, which we call split-transfer, by considering two receivers and many additional helpers sharing a mixed state. We give a protocol for performing a split-transfer and apply it to the problem of assisted entanglement distillation.
- The existence of quantum uncertainty relations is the essential reason that some classically impossible cryptographic primitives become possible when quantum communication is allowed. One direct operational manifestation of these uncertainty relations is a purely quantum effect referred to as information locking. A locking scheme can be viewed as a cryptographic protocol in which a uniformly random n-bit message is encoded in a quantum system using a classical key of size much smaller than n. Without the key, no measurement of this quantum state can extract more than a negligible amount of information about the message, in which case the message is said to be "locked". Furthermore, knowing the key, it is possible to recover, that is "unlock", the message. In this paper, we make the following contributions by exploiting a connection between uncertainty relations and low-distortion embeddings of L2 into L1. We introduce the notion of metric uncertainty relations and connect it to low-distortion embeddings of L2 into L1. A metric uncertainty relation also implies an entropic uncertainty relation. We prove that random bases satisfy uncertainty relations with a stronger definition and better parameters than previously known. Our proof is also considerably simpler than earlier proofs. We apply this result to show the existence of locking schemes with key size independent of the message length. We give efficient constructions of metric uncertainty relations. The bases defining these metric uncertainty relations are computable by quantum circuits of almost linear size. This leads to the first explicit construction of a strong information locking scheme. Moreover, we present a locking scheme that is close to being implementable with current technology. We apply our metric uncertainty relations to exhibit communication protocols that perform quantum equality testing.
- If a quantum system is subject to noise, it is possible to perform quantum error correction reversing the action of the noise if and only if no information about the system's quantum state leaks to the environment. In this article, we develop an analogous duality in the case that the environment approximately forgets the identity of the quantum state, a weaker condition satisfied by epsilon-randomizing maps and approximate unitary designs. Specifically, we show that the environment approximately forgets quantum states if and only if the original channel approximately preserves pairwise fidelities of pure inputs, an observation we call weak decoupling duality. Using this tool, we then go on to study the task of using the output of a channel to simulate restricted classes of measurements on a space of input states. The case of simulating measurements that test whether the input state is an arbitrary pure state is known as equality testing or quantum identification. An immediate consequence of weak decoupling duality is that the ability to perform quantum identification cannot be cloned. We furthermore establish that the optimal amortized rate at which quantum states can be identified through a noisy quantum channel is equal to the entanglement-assisted classical capacity of the channel, despite the fact that the task is quantum, not classical, and entanglement-assistance is not allowed. In particular, this rate is strictly positive for every non-constant quantum channel, including classical channels.
- Coding theorems in quantum Shannon theory express the ultimate rates at which a sender can transmit information over a noisy quantum channel. More often than not, the known formulas expressing these transmission rates are intractable, requiring an optimization over an infinite number of uses of the channel. Researchers have rarely found quantum channels with a tractable classical or quantum capacity, but when such a finding occurs, it demonstrates a complete understanding of that channel's capabilities for transmitting classical or quantum information. Here, we show that the three-dimensional capacity region for entanglement-assisted transmission of classical and quantum information is tractable for the Hadamard class of channels. Examples of Hadamard channels include generalized dephasing channels, cloning channels, and the Unruh channel. The generalized dephasing channels and the cloning channels are natural processes that occur in quantum systems through the loss of quantum coherence or stimulated emission, respectively. The Unruh channel is a noisy process that occurs in relativistic quantum information theory as a result of the Unruh effect and bears a strong relationship to the cloning channels. We give exact formulas for the entanglement-assisted classical and quantum communication capacity regions of these channels. The coding strategy for each of these examples is superior to a naive time-sharing strategy, and we introduce a measure to determine this improvement.
- For all p > 1, we demonstrate the existence of quantum channels with non-multiplicative maximal output p-norms. Equivalently, for all p >1, the minimum output Renyi entropy of order p of a quantum channel is not additive. The violations found are large; in all cases, the minimum output Renyi entropy of order p for a product channel need not be significantly greater than the minimum output entropy of its individual factors. Since p=1 corresponds to the von Neumann entropy, these counterexamples demonstrate that if the additivity conjecture of quantum information theory is true, it cannot be proved as a consequence of any channel-independent guarantee of maximal p-norm multiplicativity. We also show that a class of channels previously studied in the context of approximate encryption lead to counterexamples for all p > 2.
- Using random Gaussian vectors and an information-uncertainty relation, we give a proof that the coherent information is an achievable rate for entanglement transmission through a noisy quantum channel. The codes are random subspaces selected according to the Haar measure, but distorted as a function of the sender's input density operator. Using large deviations techniques, we show that classical data transmitted in either of two Fourier-conjugate bases for the coding subspace can be decoded with low probability of error. A recently discovered information-uncertainty relation then implies that the quantum mutual information for entanglement encoded into the subspace and transmitted through the channel will be high. The monogamy of quantum correlations finally implies that the environment of the channel cannot be significantly coupled to the entanglement, and concluding, which ensures the existence of a decoding by the receiver.
- We study a protocol in which many parties use quantum communication to transfer a shared state to a receiver without communicating with each other. This protocol is a multiparty version of the fully quantum Slepian-Wolf protocol for two senders and arises through the repeated application of the two-sender protocol. We describe bounds on the achievable rate region for the distributed compression problem. The inner bound arises by expressing the achievable rate region for our protocol in terms of its vertices and extreme rays and, equivalently, in terms of facet inequalities. We also prove an outer bound on all possible rates for distributed compression based on the multiparty squashed entanglement, a measure of multiparty entanglement.
- We give a short proof that the coherent information is an achievable rate for the transmission of quantum information through a noisy quantum channel. Our method is to produce random codes by performing a unitarily covariant projective measurement on a typical subspace of a tensor power state. We show that, provided the rank of each measurement operator is sufficiently small, the transmitted data will with high probability be decoupled from the channel's environment. We also show that our construction leads to random codes whose average input is close to a product state and outline a modification yielding unitarily invariant ensembles of maximally entangled codes.
- A new protocol for quantum broadcast channels based on the fully quantum Slepian-Wolf protocol is presented. The protocol yields an achievable rate region for entanglement-assisted transmission of quantum information through a quantum broadcast channel that can be considered the quantum analogue of Marton's region for classical broadcast channels. The protocol can be adapted to yield achievable rate regions for unassisted quantum communication and for entanglement-assisted classical communication; in the case of unassisted transmission, the region we obtain has no independent constraint on the sum rate, only on the individual transmission rates. Regularized versions of all three rate regions are provably optimal.
- We consider quantum channels with one sender and two receivers, used in several different ways for the simultaneous transmission of independent messages. We begin by extending the technique of superposition coding to quantum channels with a classical input to give a general achievable region. We also give outer bounds to the capacity regions for various special cases from the classical literature and prove that superposition coding is optimal for a class of channels. We then consider extensions of superposition coding for channels with a quantum input, where some of the messages transmitted are quantum instead of classical, in the sense that the parties establish bipartite or tripartite GHZ entanglement. We conclude by using state merging to give achievable rates for establishing bipartite entanglement between different pairs of parties with the assistance of free classical communication.
- We consider quantum channels with two senders and one receiver. For an arbitrary such channel, we give multi-letter characterizations of two different two-dimensional capacity regions. The first region characterizes the rates at which it is possible for one sender to send classical information while the other sends quantum information. The second region gives the rates at which each sender can send quantum information. We give an example of a channel for which each region has a single-letter description, concluding with a characterization of the rates at which each user can simultaneously send classical and quantum information.