results for au:Gunter_G in:physics

- How do isolated quantum systems approach an equilibrium state? We experimentally and theoretically address this question for a prototypical spin system formed by ultracold atoms prepared in two Rydberg states with different orbital angular momenta. By coupling these states with a resonant microwave driving we realize a dipolar XY spin-1/2 model in an external field. Starting from a spin-polarized state we suddenly switch on the external field and monitor the subsequent many-body dynamics. Our key observation is density dependent relaxation of the total magnetization much faster than typical decoherence rates. To determine the processes governing this relaxation we compare with different theoretical approaches which treat quantum effects on initial conditions and dynamical laws separately. This allows us to identify an intrinsically quantum component to the relaxation attributed to primordial quantum fluctuations.
- We present combined measurements of the spatially-resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The observed optical transmission of a weak probe laser at the center of the coupling region exhibits a double peaked spectrum as a function of detuning, whilst the Rydberg atom number shows a comparatively narrow single resonance. By imaging the transmitted light onto a charge-coupled-device camera, we record hundreds of spectra in parallel, which are used to map out the spatial profile of Rabi frequencies of the coupling laser. Using all the information available we can reconstruct the full one-body density matrix of the three-level system, which provides the optical susceptibility and the Rydberg density as a function of spatial position. These results help elucidate the connection between three-level interference phenomena, including the interplay of matter and light degrees of freedom and will facilitate new studies of many-body effects in optically driven Rydberg gases.
- We investigate the transport of excitations through a chain of atoms with non-local dissipation introduced through coupling to additional short-lived states. The system is described by an effective spin-1/2 model where the ratio of the exchange interaction strength to the reservoir coupling strength determines the type of transport, including coherent exciton motion, incoherent hopping and a regime in which an emergent length scale leads to a preferred hopping distance far beyond nearest neighbors. For multiple impurities, the dissipation gives rise to strong nearest-neighbor correlations and entanglement. These results highlight the importance of non-trivial dissipation, correlations and many-body effects in recent experiments on the dipole-mediated transport of Rydberg excitations.
- We experimentally study the full counting statistics of few-body Rydberg aggregates excited from a quasi-one-dimensional Rydberg gas. We measure asymmetric excitation spectra and increased second and third order statistical moments of the Rydberg number distribution, from which we determine the average aggregate size. Direct comparisons with numerical simulations reveal the presence of liquid-like spatial correlations, and indicate sequential growth of the aggregates around an initial grain. These findings demonstrate the importance of dissipative effects in strongly correlated Rydberg gases and introduce a way to study spatio-temporal correlations in strongly-interacting many-body quantum systems without imaging.
- Jul 04 2013 physics.atom-ph cond-mat.quant-gas arXiv:1307.1074v1Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose-Einstein condensation transition. An electrode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg--Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre-structure an atomic gas prior to its spontaneous evolution into an ultracold plasma. Second, hybrid states of photons and atoms called dark-state polaritons are studied. By looking at the statistical distribution of Rydberg excited atoms we reveal correlations between dark-state polaritons. These experiments will ultimately provide a deeper understanding of many-body phenomena in strongly-interacting regimes, including the study of strongly-coupled plasmas and interfaces between atoms and light at the quantum level.
- Interfacing light and matter at the quantum level is at the heart of modern atomic and optical physics and enables new quantum technologies involving the manipulation of single photons and atoms. A prototypical atom-light interface is electromagnetically induced transparency, in which quantum interference gives rise to hybrid states of photons and atoms called dark-state polaritons. We have observed individual dark-state polaritons as they propagate through an ultracold atomic gas involving Rydberg states. Strong long-range interactions between Rydberg atoms give rise to an effective interaction blockade for dark-state polaritons, which results in large optical nonlinearities and modified polariton number statistics. The observed statistical fluctuations drop well below the quantum noise limit indicating that photon correlations modified by the strong interactions have a significant back-action on the Rydberg atom statistics.
- Sep 24 2012 physics.atom-ph physics.plasm-ph arXiv:1209.4728v2We report the sudden and spontaneous evolution of an initially correlated gas of repulsively interacting Rydberg atoms to an ultracold plasma. Under continuous laser coupling we create a Rydberg ensemble in the strong blockade regime, which at longer times undergoes an ionization avalanche. By combining optical imaging and ion detection, we access the full information on the dynamical evolution of the system, including the rapid increase in the number of ions and a sudden depletion of the Rydberg and ground state densities. Rydberg-Rydberg interactions are observed to strongly affect the dynamics of plasma formation. Using a coupled rate-equation model to describe our data, we extract the average energy of electrons trapped in the plasma, and an effective cross-section for ionizing collisions between Rydberg atoms and atoms in low-lying states. Our results suggest that the initial correlations of the Rydberg ensemble should persist through the avalanche. This would provide the means to overcome disorder-induced-heating, and offer a route to enter new strongly-coupled regimes.
- We propose a new all-optical method to image individual atoms within dense atomic gases. The scheme exploits interaction induced shifts on highly polarizable excited states, which can be spatially resolved via an electromagnetically induced transparency resonance. We focus in particular on imaging strongly interacting many-body states of Rydberg atoms embedded in an ultracold gas of ground state atoms. Using a realistic model we show that it is possible to image individual impurity atoms with enhanced sensitivity and high resolution despite photon shot noise and atomic density fluctuations. This new imaging scheme is ideally suited to equilibrium and dynamical studies of complex many-body phenomena involving strongly interacting atoms. As an example we study blockade effects and correlations in the distribution of Rydberg atoms optically excited from a dense gas.
- Dec 22 2009 physics.atom-ph arXiv:0912.4099v2We investigate Coherent Population Trapping in a strongly interacting ultracold Rydberg gas. Despite the strong van der Waals interactions and interparticle correlations, we observe the persistence of a resonance with subnatural linewidth at the single-particle resonance frequency as we tune the interaction strength. This narrow resonance cannot be understood within a meanfield description of the strong Rydberg--Rydberg interactions. Instead, a many-body density matrix approach, accounting for the dynamics of interparticle correlations, is shown to reproduce the observed spectral features.