results for au:Guibas_L in:cs

- Feb 07 2018 cs.CG arXiv:1802.01698v1In this paper, we describe a robust algorithm for 2-Manifold generation of various kinds of ShapeNet Models. The input of our pipeline is a triangle mesh, with a set of vertices and triangular faces. The output of our pipeline is a 2-Manifold with vertices roughly uniformly distributed on the geometry surface. Our algorithm uses an octree to represent the original mesh, and construct the surface by isosurface extraction. Finally, we project the vertices to the original mesh to achieve high precision. As a result, our method can be adopted efficiently to all ShapeNet models with the guarantee of correct 2-Manifold topology.
- Nov 27 2017 cs.CV arXiv:1711.08488v1While object recognition on 2D images is getting more and more mature, 3D understanding is eagerly in demand yet largely underexplored. In this paper, we study the 3D object detection problem from RGB-D data captured by depth sensors in both indoor and outdoor environments. Different from previous deep learning methods that work on 2D RGB-D images or 3D voxels, which often obscure natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. Although recent works such as PointNet performs well for segmentation in small-scale point clouds, one key challenge is how to efficiently detect objects in large-scale scenes. Leveraging the wisdom of dimension reduction and mature 2D object detectors, we develop a Frustum PointNet framework that addresses the challenge. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms state of the arts by remarkable margins with high efficiency (running at 5 fps).
- Oct 18 2017 cs.CV arXiv:1710.06104v2We introduce a large-scale 3D shape understanding benchmark using data and annotation from ShapeNet 3D object database. The benchmark consists of two tasks: part-level segmentation of 3D shapes and 3D reconstruction from single view images. Ten teams have participated in the challenge and the best performing teams have outperformed state-of-the-art approaches on both tasks. A few novel deep learning architectures have been proposed on various 3D representations on both tasks. We report the techniques used by each team and the corresponding performances. In addition, we summarize the major discoveries from the reported results and possible trends for the future work in the field.
- Aug 08 2017 cs.GR arXiv:1708.01841v2Assembly-based tools provide a powerful modeling paradigm for non-expert shape designers. However, choosing a component from a large shape repository and aligning it to a partial assembly can become a daunting task. In this paper we describe novel neural network architectures for suggesting complementary components and their placement for an incomplete 3D part assembly. Unlike most existing techniques, our networks are trained on unlabeled data obtained from public online repositories, and do not rely on consistent part segmentations or labels. Absence of labels poses a challenge in indexing the database of parts for the retrieval. We address it by jointly training embedding and retrieval networks, where the first indexes parts by mapping them to a low-dimensional feature space, and the second maps partial assemblies to appropriate complements. The combinatorial nature of part arrangements poses another challenge, since the retrieval network is not a function: several complements can be appropriate for the same input. Thus, instead of predicting a single output, we train our network to predict a probability distribution over the space of part embeddings. This allows our method to deal with ambiguities and naturally enables a UI that seamlessly integrates user preferences into the design process. We demonstrate that our method can be used to design complex shapes with minimal or no user input. To evaluate our approach we develop a novel benchmark for component suggestion systems demonstrating significant improvement over state-of-the-art techniques.
- Three-dimensional geometric data offer an excellent domain for studying representation learning and generative modeling. In this paper, we look at geometric data represented as point clouds. We introduce a deep autoencoder (AE) network with state-of-the-art reconstruction quality and generalization ability. The learned representations outperform existing methods for 3D recognition tasks and enable basic shape editing via simple algebraic manipulations, such as semantic part editing, shape analogies and shape interpolation. We perform a thorough study of different generative models including: GANs operating on the raw point clouds, significantly improved GANs trained in the fixed latent space our AEs and Gaussian mixture models (GMM). For our quantitative evaluation we propose measures of sample fidelity and diversity based on matchings between sets of point clouds. Interestingly, our careful evaluation of generalization, fidelity and diversity reveals that GMMs trained in the latent space of our AEs produce the best results.
- Jun 09 2017 cs.CV arXiv:1706.02413v1Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds.
- We introduce a novel neural network architecture for encoding and synthesis of 3D shapes, particularly their structures. Our key insight is that 3D shapes are effectively characterized by their hierarchical organization of parts, which reflects fundamental intra-shape relationships such as adjacency and symmetry. We develop a recursive neural net (RvNN) based autoencoder to map a flat, unlabeled, arbitrary part layout to a compact code. The code effectively captures hierarchical structures of man-made 3D objects of varying structural complexities despite being fixed-dimensional: an associated decoder maps a code back to a full hierarchy. The learned bidirectional mapping is further tuned using an adversarial setup to yield a generative model of plausible structures, from which novel structures can be sampled. Finally, our structure synthesis framework is augmented by a second trained module that produces fine-grained part geometry, conditioned on global and local structural context, leading to a full generative pipeline for 3D shapes. We demonstrate that without supervision, our network learns meaningful structural hierarchies adhering to perceptual grouping principles, produces compact codes which enable applications such as shape classification and partial matching, and supports shape synthesis and interpolation with significant variations in topology and geometry.
- May 05 2017 cs.GR arXiv:1705.01661v1We propose a method for converting geometric shapes into hierarchically segmented parts with part labels. Our key idea is to train category-specific models from the scene graphs and part names that accompany 3D shapes in public repositories. These freely-available annotations represent an enormous, untapped source of information on geometry. However, because the models and corresponding scene graphs are created by a wide range of modelers with different levels of expertise, modeling tools, and objectives, these models have very inconsistent segmentations and hierarchies with sparse and noisy textual tags. Our method involves two analysis steps. First, we perform a joint optimization to simultaneously cluster and label parts in the database while also inferring a canonical tag dictionary and part hierarchy. We then use this labeled data to train a method for hierarchical segmentation and labeling of new 3D shapes. We demonstrate that our method can mine complex information, detecting hierarchies in man-made objects and their constituent parts, obtaining finer scale details than existing alternatives. We also show that, by performing domain transfer using a few supervised examples, our technique outperforms fully-supervised techniques that require hundreds of manually-labeled models.
- Dec 22 2016 cs.CV arXiv:1612.07310v1Important high-level vision tasks such as human-object interaction, image captioning and robotic manipulation require rich semantic descriptions of objects at part level. Based upon previous work on part localization, in this paper, we address the problem of inferring rich semantics imparted by an object part in still images. We propose to tokenize the semantic space as a discrete set of part states. Our modeling of part state is spatially localized, therefore, we formulate the part state inference problem as a pixel-wise annotation problem. An iterative part-state inference neural network is specifically designed for this task, which is efficient in time and accurate in performance. Extensive experiments demonstrate that the proposed method can effectively predict the semantic states of parts and simultaneously correct localization errors, thus benefiting a few visual understanding applications. The other contribution of this paper is our part state dataset which contains rich part-level semantic annotations.
- Dec 05 2016 cs.CV arXiv:1612.00603v2Generation of 3D data by deep neural network has been attracting increasing attention in the research community. The majority of extant works resort to regular representations such as volumetric grids or collection of images; however, these representations obscure the natural invariance of 3D shapes under geometric transformations and also suffer from a number of other issues. In this paper we address the problem of 3D reconstruction from a single image, generating a straight-forward form of output -- point cloud coordinates. Along with this problem arises a unique and interesting issue, that the groundtruth shape for an input image may be ambiguous. Driven by this unorthodox output form and the inherent ambiguity in groundtruth, we design architecture, loss function and learning paradigm that are novel and effective. Our final solution is a conditional shape sampler, capable of predicting multiple plausible 3D point clouds from an input image. In experiments not only can our system outperform state-of-the-art methods on single image based 3d reconstruction benchmarks; but it also shows a strong performance for 3d shape completion and promising ability in making multiple plausible predictions.
- Dec 05 2016 cs.CV arXiv:1612.00606v1In this paper, we study the problem of semantic annotation on 3D models that are represented as shape graphs. A functional view is taken to represent localized information on graphs, so that annotations such as part segment or keypoint are nothing but 0-1 indicator vertex functions. Compared with images that are 2D grids, shape graphs are irregular and non-isomorphic data structures. To enable the prediction of vertex functions on them by convolutional neural networks, we resort to spectral CNN method that enables weight sharing by parameterizing kernels in the spectral domain spanned by graph laplacian eigenbases. Under this setting, our network, named SyncSpecCNN, strive to overcome two key challenges: how to share coefficients and conduct multi-scale analysis in different parts of the graph for a single shape, and how to share information across related but different shapes that may be represented by very different graphs. Towards these goals, we introduce a spectral parameterization of dilated convolutional kernels and a spectral transformer network. Experimentally we tested our SyncSpecCNN on various tasks, including 3D shape part segmentation and 3D keypoint prediction. State-of-the-art performance has been achieved on all benchmark datasets.
- Dec 05 2016 cs.CV arXiv:1612.00593v2Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds and well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong performance on par or even better than state of the art. Theoretically, we provide analysis towards understanding of what the network has learnt and why the network is robust with respect to input perturbation and corruption.
- Dec 02 2016 cs.CV arXiv:1612.00404v3We present a learning framework for abstracting complex shapes by learning to assemble objects using 3D volumetric primitives. In addition to generating simple and geometrically interpretable explanations of 3D objects, our framework also allows us to automatically discover and exploit consistent structure in the data. We demonstrate that using our method allows predicting shape representations which can be leveraged for obtaining a consistent parsing across the instances of a shape collection and constructing an interpretable shape similarity measure. We also examine applications for image-based prediction as well as shape manipulation.
- In this paper we propose an optimization-based framework to multiple graph matching. The framework takes as input maps computed between pairs of graphs, and outputs maps that 1) are consistent among all pairs of graphs, and 2) preserve edge connectivity between pairs of graphs. We show how to formulate this as solving a piece-wise low-rank matrix recovery problem using a generalized message passing scheme. We also present necessary and sufficient conditions under which such global consistency is guaranteed. The key feature of our approach is that it is scalable to large datasets, while still produce maps whose quality is competent against state-of-the-art global optimization-based techniques.
- Interactions play a key role in understanding objects and scenes, for both virtual and real world agents. We introduce a new general representation for proximal interactions among physical objects that is agnostic to the type of objects or interaction involved. The representation is based on tracking particles on one of the participating objects and then observing them with sensors appropriately placed in the interaction volume or on the interaction surfaces. We show how to factorize these interaction descriptors and project them into a particular participating object so as to obtain a new functional descriptor for that object, its interaction landscape, capturing its observed use in a spatio-temporal framework. Interaction landscapes are independent of the particular interaction and capture subtle dynamic effects in how objects move and behave when in functional use. Our method relates objects based on their function, establishes correspondences between shapes based on functional key points and regions, and retrieves peer and partner objects with respect to an interaction.
- May 23 2016 cs.CV arXiv:1605.06240v3Building discriminative representations for 3D data has been an important task in computer graphics and computer vision research. Convolutional Neural Networks (CNNs) have shown to operate on 2D images with great success for a variety of tasks. Lifting convolution operators to 3D (3DCNNs) seems like a plausible and promising next step. Unfortunately, the computational complexity of 3D CNNs grows cubically with respect to voxel resolution. Moreover, since most 3D geometry representations are boundary based, occupied regions do not increase proportionately with the size of the discretization, resulting in wasted computation. In this work, we represent 3D spaces as volumetric fields, and propose a novel design that employs field probing filters to efficiently extract features from them. Each field probing filter is a set of probing points --- sensors that perceive the space. Our learning algorithm optimizes not only the weights associated with the probing points, but also their locations, which deforms the shape of the probing filters and adaptively distributes them in 3D space. The optimized probing points sense the 3D space "intelligently", rather than operating blindly over the entire domain. We show that field probing is significantly more efficient than 3DCNNs, while providing state-of-the-art performance, on classification tasks for 3D object recognition benchmark datasets.
- 3D shape models are becoming widely available and easier to capture, making available 3D information crucial for progress in object classification. Current state-of-the-art methods rely on CNNs to address this problem. Recently, we witness two types of CNNs being developed: CNNs based upon volumetric representations versus CNNs based upon multi-view representations. Empirical results from these two types of CNNs exhibit a large gap, indicating that existing volumetric CNN architectures and approaches are unable to fully exploit the power of 3D representations. In this paper, we aim to improve both volumetric CNNs and multi-view CNNs according to extensive analysis of existing approaches. To this end, we introduce two distinct network architectures of volumetric CNNs. In addition, we examine multi-view CNNs, where we introduce multi-resolution filtering in 3D. Overall, we are able to outperform current state-of-the-art methods for both volumetric CNNs and multi-view CNNs. We provide extensive experiments designed to evaluate underlying design choices, thus providing a better understanding of the space of methods available for object classification on 3D data.
- Mar 23 2016 cs.MS arXiv:1603.06927v1Optimal transportation distances are valuable for comparing and analyzing probability distributions, but larger-scale computational techniques for the theoretically favorable quadratic case are limited to smooth domains or regularized approximations. Motivated by fluid flow-based transportation on $\mathbb{R}^n$, however, this paper introduces an alternative definition of optimal transportation between distributions over graph vertices. This new distance still satisfies the triangle inequality but has better scaling and a connection to continuous theories of transportation. It is constructed by adapting a Riemannian structure over probability distributions to the graph case, providing transportation distances as shortest-paths in probability space. After defining and analyzing theoretical properties of our new distance, we provide a time discretization as well as experiments verifying its effectiveness.
- We present ShapeNet: a richly-annotated, large-scale repository of shapes represented by 3D CAD models of objects. ShapeNet contains 3D models from a multitude of semantic categories and organizes them under the WordNet taxonomy. It is a collection of datasets providing many semantic annotations for each 3D model such as consistent rigid alignments, parts and bilateral symmetry planes, physical sizes, keywords, as well as other planned annotations. Annotations are made available through a public web-based interface to enable data visualization of object attributes, promote data-driven geometric analysis, and provide a large-scale quantitative benchmark for research in computer graphics and vision. At the time of this technical report, ShapeNet has indexed more than 3,000,000 models, 220,000 models out of which are classified into 3,135 categories (WordNet synsets). In this report we describe the ShapeNet effort as a whole, provide details for all currently available datasets, and summarize future plans.
- Knowledge tracing---where a machine models the knowledge of a student as they interact with coursework---is a well established problem in computer supported education. Though effectively modeling student knowledge would have high educational impact, the task has many inherent challenges. In this paper we explore the utility of using Recurrent Neural Networks (RNNs) to model student learning. The RNN family of models have important advantages over previous methods in that they do not require the explicit encoding of human domain knowledge, and can capture more complex representations of student knowledge. Using neural networks results in substantial improvements in prediction performance on a range of knowledge tracing datasets. Moreover the learned model can be used for intelligent curriculum design and allows straightforward interpretation and discovery of structure in student tasks. These results suggest a promising new line of research for knowledge tracing and an exemplary application task for RNNs.
- Providing feedback, both assessing final work and giving hints to stuck students, is difficult for open-ended assignments in massive online classes which can range from thousands to millions of students. We introduce a neural network method to encode programs as a linear mapping from an embedded precondition space to an embedded postcondition space and propose an algorithm for feedback at scale using these linear maps as features. We apply our algorithm to assessments from the Code.org Hour of Code and Stanford University's CS1 course, where we propagate human comments on student assignments to orders of magnitude more submissions.
- May 22 2015 cs.CV arXiv:1505.05641v1Object viewpoint estimation from 2D images is an essential task in computer vision. However, two issues hinder its progress: scarcity of training data with viewpoint annotations, and a lack of powerful features. Inspired by the growing availability of 3D models, we propose a framework to address both issues by combining render-based image synthesis and CNNs. We believe that 3D models have the potential in generating a large number of images of high variation, which can be well exploited by deep CNN with a high learning capacity. Towards this goal, we propose a scalable and overfit-resistant image synthesis pipeline, together with a novel CNN specifically tailored for the viewpoint estimation task. Experimentally, we show that the viewpoint estimation from our pipeline can significantly outperform state-of-the-art methods on PASCAL 3D+ benchmark.
- Let $P$ be a set of $n$ points in $\mathrm{R}^2$, and let $\mathrm{DT}(P)$ denote its Euclidean Delaunay triangulation. We introduce the notion of an edge of $\mathrm{DT}(P)$ being \it stable. Defined in terms of a parameter $\alpha>0$, a Delaunay edge $pq$ is called $\alpha$-stable, if the (equal) angles at which $p$ and $q$ see the corresponding Voronoi edge $e_{pq}$ are at least $\alpha$. A subgraph $G$ of $\mathrm{DT}(P)$ is called \it $(c\alpha, \alpha)$-stable Delaunay graph ($\mathrm{SDG}$ in short), for some constant $c \ge 1$, if every edge in $G$ is $\alpha$-stable and every $c\alpha$-stable of $\mathrm{DT}(P)$ is in $G$. We show that if an edge is stable in the Euclidean Delaunay triangulation of $P$, then it is also a stable edge, though for a different value of $\alpha$, in the Delaunay triangulation of $P$ under any convex distance function that is sufficiently close to the Euclidean norm, and vice-versa. In particular, a $6\alpha$-stable edge in $\mathrm{DT}(P)$ is $\alpha$-stable in the Delaunay triangulation under the distance function induced by a regular $k$-gon for $k \ge 2\pi/\alpha$, and vice-versa. Exploiting this relationship and the analysis in~\citepolydel, we present a linear-size kinetic data structure (KDS) for maintaining an $(8\alpha,\alpha)$-$\mathrm{SDG}$ as the points of $P$ move. If the points move along algebraic trajectories of bounded degree, the KDS processes nearly quadratic events during the motion, each of which can processed in $O(\log n)$ time. Finally, we show that a number of useful properties of $\mathrm{DT}(P)$ are retained by $\mathrm{SDG}$ of $P$.
- Dec 02 2014 cs.CV arXiv:1412.0003v1Comparing two images in a view-invariant way has been a challenging problem in computer vision for a long time, as visual features are not stable under large view point changes. In this paper, given a single input image of an object, we synthesize new features for other views of the same object. To accomplish this, we introduce an aligned set of 3D models in the same class as the input object image. Each 3D model is represented by a set of views, and we study the correlation of image patches between different views, seeking what we call surrogates --- patches in one view whose feature content predicts well the features of a patch in another view. In particular, for each patch in the novel desired view, we seek surrogates from the observed view of the given image. For a given surrogate, we predict that surrogate using linear combination of the corresponding patches of the 3D model views, learn the coefficients, and then transfer these coefficients on a per patch basis to synthesize the features of the patch in the novel view. In this way we can create feature sets for all views of the latent object, providing us a multi-view representation of the object. View-invariant object comparisons are achieved simply by computing the $L^2$ distances between the features of corresponding views. We provide theoretical and empirical analysis of the feature synthesis process, and evaluate the proposed view-agnostic distance (VAD) in fine-grained image retrieval (100 object classes) and classification tasks. Experimental results show that our synthesized features do enable view-independent comparison between images and perform significantly better than traditional image features in this respect.
- Maximum a posteriori (MAP) inference over discrete Markov random fields is a fundamental task spanning a wide spectrum of real-world applications, which is known to be NP-hard for general graphs. In this paper, we propose a novel semidefinite relaxation formulation (referred to as SDR) to estimate the MAP assignment. Algorithmically, we develop an accelerated variant of the alternating direction method of multipliers (referred to as SDPAD-LR) that can effectively exploit the special structure of the new relaxation. Encouragingly, the proposed procedure allows solving SDR for large-scale problems, e.g., problems on a grid graph comprising hundreds of thousands of variables with multiple states per node. Compared with prior SDP solvers, SDPAD-LR is capable of attaining comparable accuracy while exhibiting remarkably improved scalability, in contrast to the commonly held belief that semidefinite relaxation can only been applied on small-scale MRF problems. We have evaluated the performance of SDR on various benchmark datasets including OPENGM2 and PIC in terms of both the quality of the solutions and computation time. Experimental results demonstrate that for a broad class of problems, SDPAD-LR outperforms state-of-the-art algorithms in producing better MAP assignment in an efficient manner.
- Joint matching over a collection of objects aims at aggregating information from a large collection of similar instances (e.g. images, graphs, shapes) to improve maps between pairs of them. Given multiple matches computed between a few object pairs in isolation, the goal is to recover an entire collection of maps that are (1) globally consistent, and (2) close to the provided maps --- and under certain conditions provably the ground-truth maps. Despite recent advances on this problem, the best-known recovery guarantees are limited to a small constant barrier --- none of the existing methods find theoretical support when more than $50\%$ of input correspondences are corrupted. Moreover, prior approaches focus mostly on fully similar objects, while it is practically more demanding to match instances that are only partially similar to each other. In this paper, we develop an algorithm to jointly match multiple objects that exhibit only partial similarities, given a few pairwise matches that are densely corrupted. Specifically, we propose to recover the ground-truth maps via a parameter-free convex program called MatchLift, following a spectral method that pre-estimates the total number of distinct elements to be matched. Encouragingly, MatchLift exhibits near-optimal error-correction ability, i.e. in the asymptotic regime it is guaranteed to work even when a dominant fraction $1-\Theta\left(\frac{\log^{2}n}{\sqrt{n}}\right)$ of the input maps behave like random outliers. Furthermore, MatchLift succeeds with minimal input complexity, namely, perfect matching can be achieved as soon as the provided maps form a connected map graph. We evaluate the proposed algorithm on various benchmark data sets including synthetic examples and real-world examples, all of which confirm the practical applicability of MatchLift.
- Apr 06 2013 cs.CV arXiv:1304.1572v4In this paper, we consider the weighted graph matching problem. Recently, approaches to this problem based on spectral methods have gained significant attention. We propose two graph spectral descriptors based on the graph Laplacian, namely a Laplacian family signature (LFS) on nodes, and a pairwise heat kernel distance on edges. We show the stability of both our descriptors under small perturbation of edges and nodes. In addition, we show that our pairwise heat kernel distance is a noise-tolerant approximation of the classical adjacency matrix-based second order compatibility function. These nice properties suggest a descriptor-based matching scheme, for which we set up an integer quadratic problem (IQP) and apply an approximate solver to find a near optimal solution. We have tested our matching method on a set of randomly generated graphs, the widely-used CMU house sequence and a set of real images. These experiments show the superior performance of our selected node signatures and edge descriptors for graph matching, as compared with other existing signature-based matchings and adjacency matrix-based matchings.
- Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets.
- Apr 05 2011 cs.CG arXiv:1104.0622v1We consider the problem of maintaining the Euclidean Delaunay triangulation $\DT$ of a set $P$ of $n$ moving points in the plane, along algebraic trajectories of constant description complexity. Since the best known upper bound on the number of topological changes in the full $\DT$ is nearly cubic, we seek to maintain a suitable portion of it that is less volatile yet retains many useful properties. We introduce the notion of a stable Delaunay graph, which is a dynamic subgraph of the Delaunay triangulation. The stable Delaunay graph (a) is easy to define, (b) experiences only a nearly quadratic number of discrete changes, (c) is robust under small changes of the norm, and (d) possesses certain useful properties. The stable Delaunay graph ($\SDG$ in short) is defined in terms of a parameter $\alpha>0$, and consists of Delaunay edges $pq$ for which the angles at which $p$ and $q$ see their Voronoi edge $e_{pq}$ are at least $\alpha$. We show that (i) $\SDG$ always contains at least roughly one third of the Delaunay edges; (ii) it contains the $\beta$-skeleton of $P$, for $\beta=1+\Omega(\alpha^2)$; (iii) it is stable, in the sense that its edges survive for long periods of time, as long as the orientations of the segments connecting (nearby) points of $P$ do not change by much; and (iv) stable Delaunay edges remain stable (with an appropriate redefinition of stability) if we replace the Euclidean norm by any sufficiently close norm. In particular, we can approximate the Euclidean norm by a polygonal norm (namely, a regular $k$-gon, with $k=\Theta(1/\alpha)$), and keep track of a Euclidean $\SDG$ by maintaining the full Delaunay triangulation of $P$ under the polygonal norm. We describe two kinetic data structures for maintaining $\SDG$. Both structures use $O^*(n)$ storage and process $O^*(n^2)$ events during the motion, each in $O^*(1)$ time.
- Feb 25 2011 cs.CG arXiv:1102.4972v1Distance function to a compact set plays a central role in several areas of computational geometry. Methods that rely on it are robust to the perturbations of the data by the Hausdorff noise, but fail in the presence of outliers. The recently introduced distance to a measure offers a solution by extending the distance function framework to reasoning about the geometry of probability measures, while maintaining theoretical guarantees about the quality of the inferred information. A combinatorial explosion hinders working with distance to a measure as an ordinary (power) distance function. In this paper, we analyze an approximation scheme that keeps the representation linear in the size of the input, while maintaining the guarantees on the inference quality close to those for the exact (but costly) representation.
- Here we present the results of the NSF-funded Workshop on Computational Topology, which met on June 11 and 12 in Miami Beach, Florida. This report identifies important problems involving both computation and topology.
- We develop a class of new kinetic data structures for collision detection between moving convex polytopes; the performance of these structures is sensitive to the separation of the polytopes during their motion. For two convex polygons in the plane, let $D$ be the maximum diameter of the polygons, and let $s$ be the minimum distance between them during their motion. Our separation certificate changes $O(\log(D/s))$ times when the relative motion of the two polygons is a translation along a straight line or convex curve, $O(\sqrt{D/s})$ for translation along an algebraic trajectory, and $O(D/s)$ for algebraic rigid motion (translation and rotation). Each certificate update is performed in $O(\log(D/s))$ time. Variants of these data structures are also shown that exhibit \emphhysteresis---after a separation certificate fails, the new certificate cannot fail again until the objects have moved by some constant fraction of their current separation. We can then bound the number of events by the combinatorial size of a certain cover of the motion path by balls.