results for au:Grojean_C in:hep-ex

- We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ~40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, is essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ~20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.
- The International Linear Collider is now proposed with a staged machine design, with the first stage at 250 GeV with a luminosity goal of 2 ab-1. In this paper, we review the physics expectations for this machine. These include precision measurements of Higgs boson couplings, searches for exotic Higgs decays, other searches for particles that decay with zero or small visible energy, and measurements of e+e- annihilation to W+W- and 2-fermion states with improved sensitivity. A summary table gives projections for the achievable levels of precision based on the latest full simulation studies.
- We point out that the stringent lower bounds on the masses of additional electrically neutral and charged Higgs bosons crucially depend on the flavour structure of their Yukawa interactions. We show that these bounds can easily be evaded by the introduction of flavour-changing neutral currents in the Higgs sector. As an illustration, we study the phenomenology of a two Higgs doublet model with a Yukawa texture singling out the third family of quarks and leptons. We combine constraints from low-energy flavour physics measurements, LHC measurements of the 125 GeV Higgs boson rates, and LHC searches for new heavy Higgs bosons. We propose novel LHC searches that could be performed in the coming years to unravel the existence of these new Higgs bosons.
- Precision study of electroweak symmetry breaking strongly motivates the construction of a lepton collider with center-of-mass energy of at least 240 GeV. Besides Higgsstrahlung ($e^+e^- \to hZ$), such a collider would measure weak boson pair production ($e^+e^- \to WW$) with an astonishing precision. The weak-boson-fusion production process ($e^+e^- \to \nu \bar{\nu} h$) provides an increasingly powerful handle at higher center-of-mass energies. High energies also benefit the associated top-Higgs production ($e^+e^-\to t\bar th$) that is crucial to constrain directly the top Yukawa coupling. The impact and complementarity of differential measurements, at different center-of-mass energies and for several beam polarization configurations, are studied in a global effective-field-theory framework. We define a "global determinant parameter" (GDP) which characterizes the overall strengthening of constraints independently of the choice of operator basis. The reach of the CEPC, CLIC, FCC-ee, and ILC designs is assessed.
- The Higgs self-coupling is notoriously intangible at the LHC. It was recently proposed to probe the trilinear Higgs interaction through its radiative corrections to single-Higgs processes. This approach however requires to disentangle these effects from those associated to deviations of other Higgs-couplings to fermions and gauge bosons. We show that a global fit exploiting only single-Higgs inclusive data suffers from degeneracies that prevent one from extracting robust bounds on each individual coupling. We show how the inclusion of double-Higgs production via gluon fusion, and the use of differential measurements in the associated single-Higgs production channels WH, ZH and ttH, can help to overcome the deficiencies of a global Higgs-couplings fit. In particular, we bound the variations of the Higgs trilinear self-coupling relative to its SM value to the interval [0.1, 2.3] at 68% confidence level at the high-luminosity LHC, and we discuss the robustness of our results against various assumptions on the experimental uncertainties and the underlying new physics dynamics. We also study how to obtain a parametrically enhanced deviation of the Higgs self-couplings and we estimate how large this deviation can be in a self-consistent effective field theory framework.
- This paper addresses the question of whether the International Linear Collider has the capability of discovering new particles that have not already been discovered at the CERN Large Hadron Collider. We summarize the various paths to discovery offered by the ILC, and discuss them in the context of three different scenarios: 1. LHC does not discover any new particles, 2. LHC discovers some new low mass states and 3. LHC discovers new heavy particles. We will show that in each case, ILC plays a critical role in discovery of new phenomena and in pushing forward the frontiers of high-energy physics as well as our understanding of the universe in a manner which is highly complementary to that of LHC. For the busy reader, a two-page executive summary is provided at the beginning of the document.
- This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. The second part discusses the recent progress in Higgs effective field theory predictions, followed by the third part on pseudo-observables, simplified template cross section and fiducial cross section measurements, which give the baseline framework for Higgs boson property measurements. The fourth part deals with the beyond the Standard Model predictions of various benchmark scenarios of Minimal Supersymmetric Standard Model, extended scalar sector, Next-to-Minimal Supersymmetric Standard Model and exotic Higgs boson decays. This report follows three previous working-group reports: Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002), Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002), and Handbook of LHC Higgs Cross Sections: 3. Higgs properties (CERN-2013-004). The current report serves as the baseline reference for Higgs physics in LHC Run 2 and beyond.
- Inclusive Higgs measurements at the LHC have limited resolution on the gluon fusion loops, being unable to distinguish the long-distance contributions mediated by the top quark from possible short-distance new physics effects. Using an Effective Field Theory (EFT) approach we compare several proposed methods to lift this degeneracy, including $t\bar{t}h$ and boosted, off-shell and double Higgs production, and perform detailed projections to the High-Luminosity LHC and a future hadron collider. In addition, we revisit off-shell Higgs production. Firstly, we point out its sensitivity to modifications of the top-$Z$ couplings, and by means of a general analysis we show that the reach is comparable to that of tree-level processes such as $t\bar{t}Z$ production. Implications for composite Higgs models are also discussed. Secondly, we assess the regime of validity of the EFT, performing an explicit comparison for a simple extension of the Standard Model containing one vector-like quark.
- If the gamma-gamma resonance at 750 GeV suggested by 2015 LHC data turns out to be a real effect, what are the implications for the physics case and upgrade path of the International Linear Collider? Whether or not the resonance is confirmed, this question provides an interesting case study testing the robustness of the ILC physics case. In this note, we address this question with two points: (1) Almost all models proposed for the new 750 GeV particle require additional new particles with electroweak couplings. The key elements of the 500 GeV ILC physics program---precision measurements of the Higgs boson, the top quark, and 4-fermion interactions---will powerfully discriminate among these models. This information will be important in conjunction with new LHC data, or alone, if the new particles accompanying the 750 GeV resonance are beyond the mass reach of the LHC. (2) Over a longer term, the energy upgrade of the ILC to 1 TeV already discussed in the ILC TDR will enable experiments in gamma-gamma and e+e- collisions to directly produce and study the 750 GeV particle from these unique initial states.
- We review strongly coupled and extra dimensional models of electroweak symmetry breaking. Models examined include warped extra dimensions, bulk Higgs, "little" Higgs, dilaton Higgs, composite Higgs, twin Higgs, quantum critical Higgs, and "fat" SUSY Higgs. We also discuss current bounds and future LHC searches for this class of models.
- We summarize the physics case for the International Linear Collider (ILC). We review the key motivations for the ILC presented in the literature, updating the projected measurement uncertainties for the ILC experiments in accord with the expected schedule of operation of the accelerator and the results of the most recent simulation studies.
- This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (Search for Hidden Particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, $\tau\to 3\mu$ and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the Standard Model and describe interactions between new particles and four different portals - scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the Standard Model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation
- A comprehensive review of physics at an e+e- Linear Collider in the energy range of sqrts=92 GeV--3 TeV is presented in view of recent and expected LHC results, experiments from low energy as well as astroparticle physics.The report focuses in particular on Higgs boson, Top quark and electroweak precision physics, but also discusses several models of beyond the Standard Model physics such as Supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analyzed as well.
- We study the off-shell Higgs data in the process $pp\to h^{(*)} \to Z^{(\ast)}Z^{(\ast)}\to 4\ell$, to constrain deviations of the Higgs couplings. We point out that this channel can be used to resolve the long- and short-distance contributions to Higgs production by gluon fusion and can thus be complementary to $pp\to ht\bar t$ in measuring the top Yukawa coupling. Our analysis, performed in the context of Effective Field Theory, shows that current data do not allow one to draw any model-independent conclusions. We study the prospects at future hadron colliders, including the high-luminosity LHC and accelerators with higher-energy, up to 100 TeV. The available QCD calculations and the theoretical uncertainties affecting our analysis are also briefly discussed.
- The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the $t\bar{t}h$ channel to pin down this crucial coupling. Presented first in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.
- This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities from detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).
- The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e+e- collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the t-tbar threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSB) parameters with unequalled precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study.
- This paper summarizes the physics potential of the CLIC high-energy e+e- linear collider. It provides input to the Snowmass 2013 process for the energy-frontier working groups on The Higgs Boson (HE1), Precision Study of Electroweak Interactions (HE2), Fully Understanding the Top Quark (HE3), as well as The Path Beyond the Standard Model -- New Particles, Forces, and Dimensions (HE4). It is accompanied by a paper describing the CLIC accelerator study, submitted to the Frontier Capabilities group of the Snowmass process.
- This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered particle such as couplings to SM particles, spin and CP-quantum numbers etc.
- We compute the renormalization of dimension six Higgs-gauge boson operators that can modify \Gamma(h -> \gamma \gamma) at tree-level. Operator mixing is shown to lead to an important modification of new physics effects which has been neglected in past calculations. We also find that the usual formula for the S oblique parameter contribution of these Higgs-gauge boson operators needs additional terms to be consistent with renormalization group evolution. We study the implications of our results for Higgs phenomenology and for new physics models which attempt to explain a deviation in \Gamma(h -> \gamma \gamma). We derive a new relation between the S parameter and the \Gamma(h -> \gamma \gamma) and \Gamma(h ->Z \gamma) decay rates.
- Current Higgs data show an ambiguity in the value of the Yukawa couplings to quarks and leptons. Not so much because of still large uncertainties in the measurements but as the result of several almost degenerate minima in the coupling profile likelihood function. To break these degeneracies, it is important to identify and measure processes where the Higgs coupling to fermions interferes with other coupling(s). The most prominent example, the decay of $h \to \gamma \gamma$, is not sufficient to give a definitive answer. In this Letter, we argue that $t$-channel single top production in association with a Higgs boson, with $h\to b\bar b$, can provide the necessary information to lift the remaining degeneracy in the top Yukawa. Within the Standard Model, the total rate is highly reduced due to an almost perfect destructive interference in the hard process, $W b \rightarrow t h$. We first show that for non-standard couplings the cross section can be reliably computed without worrying about corrections from physics beyond the cutoff scale $\Lambda\gtrsim 10\,\mathrm{TeV}$, and that it can be enhanced by more than one order of magnitude compared to the SM. We then study the signal $ p p \rightarrow t h j (b)$ with 3 and 4 $b$'s in the final state, and its main backgrounds at the LHC. We find the 8 TeV run dataset to be sensitive to the sign of the anomalous top Yukawa coupling, while already a moderate integrated luminosity at 14 TeV should lift the degeneracy completely.
- This document presents an interim framework in which the coupling structure of a Higgs-like particle can be studied. After discussing different options and approximations, recommendations on specific benchmark parametrizations to be used to fit the data are given.
- Aug 03 2012 physics.acc-ph hep-ex arXiv:1208.0504v3A strong candidate for the Standard Model Scalar boson, H(126), has been discovered by the Large Hadron Collider (LHC) experiments. In order to study this fundamental particle with unprecedented precision, and to perform precision tests of the closure of the Standard Model, we investigate the possibilities offered by An e+e- storage ring collider. We use a design inspired by the B-factories, taking into account the performance achieved at LEP2, and imposing a synchrotron radiation power limit of 100 MW. At the most relevant centre-of-mass energy of 240 GeV, near-constant luminosities of 10^34 cm^-2s^-1 are possible in up to four collision points for a ring of 27km circumference. The achievable luminosity increases with the bending radius, and for 80km circumference, a luminosity of 5 10^34 cm^-2s^-1 in four collision points appears feasible. Beamstrahlung becomes relevant at these high luminosities, leading to a design requirement of large momentum acceptance both in the accelerating system and in the optics. The larger machine could reach the top quark threshold, would yield luminosities per interaction point of 10^36 cm^-2s^-1 at the Z pole (91 GeV) and 2 10^35 cm^-2s^-1 at the W pair production threshold (80 GeV per beam). The energy spread is reduced in the larger ring with respect to what is was at LEP, giving confidence that beam polarization for energy calibration purposes should be available up to the W pair threshold. The capabilities in term of physics performance are outlined.
- We perform a global fit to Higgs signal-strength data in the context of light stops in Natural SUSY. In this case, the Wilson coefficients of the higher dimensional operators mediating g g -> h and h -> \gamma \gamma, given by c_g, c_\gamma, are related by c_g = 3 (1 + 3 \alpha_s/(2 \pi)) c_\gamma/8. We examine this predictive scenario in detail, combining Higgs signal-strength constraints with recent precision measurements of m_W, b-> s \gamma constraints and direct collider bounds on weak scale SUSY, finding regions of parameter space that are consistent with all of these constraints. However it is challenging for the allowed parameter space to reproduce the observed Higgs mass value with sub-TeV stops. We discuss some of the direct stop discovery prospects and show how global Higgs fits can be used to exclude light stop parameter space difficult to probe by direct collider searches. We determine the current status of such indirect exclusions and estimate their reach by the end of the 8 TeV LHC run.
- The 8 TeV LHC Higgs search data just released indicates the existence of a scalar resonance with mass ~ 125 GeV. We examine the implications of the data reported by ATLAS, CMS and the Tevatron collaborations on understanding the properties of this scalar by performing joint fits on its couplings to other Standard Model particles. We discuss and characterize to what degree this resonance has the properties of the Standard Model (SM) Higgs, and consider what implications can be extracted for New Physics in a (mostly) model-independent fashion. We find that, if the Higgs couplings to fermions and weak vector bosons are allowed to differ from their standard values, the SM is ~ 2 sigma from the best fit point to current data. Fitting to a possible invisible decay branching ratio, we find BR_inv = 0.05\pm 0.32\ (95% C.L.) We also discuss and develop some ways of using the data in order to bound or rule out models which modify significantly the properties of this scalar resonance and apply these techniques to the global current data set.
- The Higgs low-energy theorem gives a simple and elegant way to estimate the couplings of the Higgs boson to massless gluons and photons induced by loops of heavy particles. We extend this theorem to take into account possible nonlinear Higgs interactions resulting from a strong dynamics at the origin of the breaking of the electroweak symmetry. We show that, while it approximates with an accuracy of order a few percents single Higgs production, it receives corrections of order 50% for double Higgs production. A full one-loop computation of the gg->hh cross section is explicitly performed in MCHM5, the minimal composite Higgs model based on the SO(5)/SO(4) coset with the Standard Model fermions embedded into the fundamental representation of SO(5). In particular we take into account the contributions of all fermionic resonances, which give sizeable (negative) corrections to the result obtained considering only the Higgs nonlinearities. Constraints from electroweak precision and flavor data on the top partners are analyzed in detail, as well as direct searches at the LHC for these new fermions called to play a crucial role in the electroweak symmetry breaking dynamics.
- We demonstrate by performing a global fit on Higgs signal strength data that large invisible branching ratios Br_inv for a Standard Model (SM) Higgs particle are currently consistent with the experimental hints of a scalar resonance at the mass scale m_h ~ 124 GeV. For this mass scale, we find Br_inv < 0.64 (95 % CL) from a global fit to individual channel signal strengths supplied by ATLAS, CMS and the Tevatron collaborations. Novel tests that can be used to improve the prospects of experimentally discovering the existence of a Br_inv with future data are proposed. These tests are based on the combination of all visible channel Higgs signal strengths, and allow us to examine the required reduction in experimental and theoretical errors in this data that would allow a more significantly bounded invisible branching ratio to be experimentally supported. We examine in some detail how our conclusions and method are affected when a scalar resonance at this mass scale has couplings deviating from the SM ones.
- Electroweak precision measurements established that custodial symmetry is preserved to a good accuracy in the gauge sector after electroweak symmetry breaking. However, recent LHC results might be interpreted as pointing towards Higgs couplings that do not respect such symmetry. Motivated by this possibility, we reconsider the presence of an explicitly custodial breaking coupling in a generic Higgs parameterization. After briefly commenting on the large UV sensitivity of the T parameter to such a coupling, we perform a fit to results of Higgs searches at LHC and Tevatron, and find that the apparent enhancement of the ZZ channel with respect to WW can be accommodated. Two degenerate best-fit points are present, which we label `Zphilic' and `dysZphilic' depending on the sign of the hZZ coupling. Finally we highlight some measurements at future linear colliders that may remove such degeneracy.
- We outline a method for characterizing deviations from the properties of a Standard Model (SM) Higgs boson. We apply it to current data in order to characterize up to which degree the SM Higgs boson interpretation is consistent with experiment. We find that the SM Higgs boson is consistent with the current data set at the 82 % confidence level, based on data of excess events reported by CMS and ATLAS, which are interpreted to be related to the mass scale mh = 124-126 GeV, and on published CL_s exclusion regions. We perform a global fit in terms of two parameters characterizing the deviation from the SM value in the gauge and fermion couplings of a Higgs boson. We find two minima in the global fit and identify observables that can remove this degeneracy. An update for Moriond 2012 data is included in the Appendix, which finds that the SM Higgs boson is now consistent with the current data set at only the 94 % confidence level (which corresponds to ~ 2 sigma tension compared to the best fit point).
- The LHC has been built to understand the dynamics at the origin of the breaking of the electroweak symmetry. Weakly coupled models with a fundamental Higgs boson have focused most of the attention of the experimental searches. We will discuss here how to reinterpret these searches in the context of strongly coupled models where the Higgs boson emerges as a composite particle. In particular, we use LHC data to constrain the compositeness scale. We also briefly review the prospects to observe other bosonic and fermionic resonances of the strong sector.
- We study the phenomenology of same sign top pair production at the LHC in a model-independent way. The complete set of dimension six operators involving two top (or anti-top) quarks is introduced and the connection with all possible t- or s-channel particle exchanges is established. Only in the former case, same and opposite sign top pair production can be related. We find that while current Tevatron data disfavor t-channel models, other production mechanisms are viable and can be tested at the LHC.
- We study, within an effective approach, the phenomenology of a charged W' vector which transforms as an isosinglet under the Standard Model gauge group. We discuss bounds from present data, finding that these are quite weak for suitable choices of the right-handed quark mixing matrix. Then we study the resonant production at the early LHC of such a weakly constrained W'. We start discussing the reach in the dijet final state, which is one of the channels where the first W' signal would most likely appear, and then we analyse prospects for the more challenging discovery of W' decays into W\gamma and WZ. We show in particular that the former can be used to gain insight on the possibly composite nature of the resonance.
- The Higgs boson production cross-sections and decay rates depend, within the Standard Model (SM), on a single unknown parameter, the Higgs mass. In composite Higgs models where the Higgs boson emerges as a pseudo-Goldstone boson from a strongly-interacting sector, additional parameters control the Higgs properties which then deviate from the SM ones. These deviations modify the LEP and Tevatron exclusion bounds and significantly affect the searches for the Higgs boson at the LHC. In some cases, all the Higgs couplings are reduced, which results in deterioration of the Higgs searches but the deviations of the Higgs couplings can also allow for an enhancement of the gluon-fusion production channel, leading to higher statistical significances. The search in the H to gamma gamma channel can also be substantially improved due to an enhancement of the branching fraction for the decay of the Higgs boson into a pair of photons.
- Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300/fb of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10/fb of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.
- There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories which go beyond the Standard Model and its minimal, CP-conserving supersymmetric extension: two-Higgs-doublet models and minimal supersymmetric models with CP violation, supersymmetric models with an extra singlet, models with extra gauge groups or Higgs triplets, Little Higgs models, models in extra dimensions, and models with technicolour or other new strong dynamics. For each of these scenarios, this report presents an introduction to the phenomenology, followed by contributions on more detailed theoretical aspects and studies of possible experimental signatures at the LHC and other colliders.