# Search SciRate

results for au:Garcia_L in:gr-qc

Jul 02 2013

gr-qc arXiv:1307.0521v1

In the context of scalar-tensor theories we study the evolution of the density contrast for Jordan-Fierz-Brans-Dicke theories in a Friedmann-Lemaitre-Robertson-Walker Universe. Calculations are performed in the Einstein Frame with the cosmological background described as Lambda-Cold Dark Matter (Lambda-CDM) and supplemented by a Jordan-Fierz-Brans-Dicke field. By using a completely general procedure valid for all scalar-tensor theories, we obtain the exact fourth-order differential equation for the density contrast evolution in modes of arbitrary size. In the case of sub-Hubble modes, the expression reduces to a simpler but still fourth-order equation that is then compared with the standard (quasistatic) approximation. Differences with respect to the evolution as predicted by the standard Concordance Lambda-CDM model are observed depending on the value of the coupling.

Nov 21 2008

gr-qc arXiv:0811.3368v2

In this paper, we study the thermodynamical properties of the (2+1)dimensional black hole with a Coulomb-like electric field and the differential form of the first law of thermodynamics is derived considering a virtual displacement of its event horizon. This approach shows that it is possible to give a thermodynamical interpretation to the field equations near the horizon. The Lambda=0 solution is studied and its interesting thermodynamical properties are commented.