results for au:Foucart_F in:gr-qc

- Aug 30 2017 astro-ph.HE gr-qc arXiv:1708.08452v2General relativistic radiation hydrodynamics simulations are necessary to accurately model a number of astrophysical systems involving black holes and neutron stars. Photon transport plays a crucial role in radiatively dominated accretion disks, while neutrino transport is critical to core-collapse supernovae and to the modeling of electromagnetic transients and nucleosynthesis in neutron star mergers. However, evolving the full Boltzmann equations of radiative transport is extremely expensive. Here, we describe the implementation in the general relativistic SpEC code of a cheaper radiation hydrodynamics method which theoretically converges to a solution of Boltzmann's equation in the limit of infinite numerical resources. The algorithm is based on a gray two-moment scheme, in which we evolve the energy density and momentum density of the radiation. Two-moment schemes require a closure which fills in missing information about the energy spectrum and higher-order moments of the radiation. Instead of the approximate analytical closure currently used in core-collapse and merger simulations, we complement the two-moment scheme with a low-accuracy Monte-Carlo evolution. The Monte-Carlo results can provide any or all of the missing information in the evolution of the moments, as desired by the user. As a first test of our methods, we study a set of idealized problems demonstrating that our algorithm performs significantly better than existing analytical closures. We also discuss the current limitations of our method, in particular open questions regarding the stability of the fully coupled scheme.
- Turbulence in an accretion disk launches Alfvén waves (AWs) that propagate into the disk's corona, where they cascade and dissipate. We derive analytic expressions for the AW energy density and heating rate as functions of distance from the disk. For an idealized thin disk, the AW energy flux is $\sim f_{\rm b} \beta_{\rm d}^{-1/2}$ times the disk's radiative flux, where $\beta_{\rm d}$ is the ratio of plasma pressure to poloidal-magnetic-field pressure in the disk, and $f_{\rm b}$ is the fraction of the disk's surface with open magnetic field lines. AW heating may have a significant impact on disk coronae and outflows.
- Jun 07 2017 astro-ph.HE gr-qc arXiv:1706.01533v1Black holes with accretion rates well below the Eddington rate are expected to be surrounded by low-density, hot, geometrically thick accretion disks. This includes the two black holes being imaged at sub-horizon resolution by the Event Horizon Telescope. In these disks, the mean free path for Coulomb interactions between charged particles is large, and the accreting matter is a nearly collisionless plasma. Despite this, numerical simulations have so far modeled these accretion flows using ideal magnetohydrodynamics. Here, we present the first global, general relativistic, 3D simulations of accretion flows onto a Kerr black hole including the non-ideal effects most likely to affect the dynamics of the disk: the anisotropy between the pressure parallel and perpendicular to the magnetic field, and the heat flux along magnetic field lines. We show that for both standard and magnetically arrested disks, the pressure anisotropy is comparable to the magnetic pressure, while the heat flux remains dynamically unimportant. Despite this large pressure anisotropy, however, the time-averaged structure of the accretion flow is strikingly similar to that found in simulations treating the plasma as an ideal fluid. We argue that these similarities are largely due to the interchangeability of the viscous and magnetic shear stresses as long as the magnetic pressure is small compared to the gas pressure, and to the sub-dominant role of pressure/viscous effects in magnetically arrested disks. We conclude by highlighting outstanding questions in modeling the dynamics of low collisionality accretion flows.
- We investigate the ejecta from black hole - neutron star mergers by modeling the formation and interaction of mass ejected in a tidal tail and a disk wind. The outflows are neutron-rich, giving rise to optical/infrared emission powered by the radioactive decay of $r$-process elements (a kilonova). Here we perform an end-to-end study of this phenomenon, where we start from the output of a fully-relativistic merger simulation, calculate the post-merger hydrodynamical evolution of the ejecta and disk winds including neutrino physics, determine the final nucleosynthetic yields using post-processing nuclear reaction network calculations, and compute the kilonova emission with a radiative transfer code. We study the effects of the tail-to-disk mass ratio by scaling the tail density. A larger initial tail mass results in fallback matter becoming mixed into the disk and ejected in the subsequent disk wind. Relative to the case of a disk without dynamical ejecta, the combined outflow has lower mean electron fraction, faster speed, larger total mass, and larger absolute mass free of high-opacity Lanthanides or Actinides. In most cases, the nucleosynthetic yield is dominated by the heavy $r$-process contribution from the unbound part of the tidal tail. A Solar-like abundance distribution can however be obtained when the total mass of the dynamical ejecta is comparable to the mass of the disk outflows. The kilonova has a characteristic duration of 1 week and a luminosity of ~$10^{41}$ erg/s, with orientation effects leading to variations of a factor ~2 in brightness. At early times (< 1 day) the emission includes an optical component from the (hot) Lanthanide-rich material, but the spectrum evolves quickly to the infrared thereafter.
- Nov 07 2016 astro-ph.HE gr-qc arXiv:1611.01159v1Neutron star-black hole binaries are among the strongest sources of gravitational waves detectable by current observatories. They can also power bright electromagnetic signals (gamma-ray bursts, kilonovae), and may be a significant source of production of r-process nuclei. A misalignment of the black hole spin with respect to the orbital angular momentum leads to precession of that spin and of the orbital plane, and has a significant effect on the properties of the post-merger remnant and of the material ejected by the merger. We present a first set of simulations of precessing neutron star-black hole mergers using a hot, composition dependent, nuclear-theory based equation of state (DD2). We show that the mass of the remnant and of the dynamical ejecta are broadly consistent with the result of simulations using simpler equations of state, while differences arise when considering the dynamics of the merger and the velocity of the ejecta. We show that the latter can easily be understood from assumptions about the composition of low-density, cold material in the different equations of state, and propose an updated estimate for the ejecta velocity which takes those effects into account. We also present an updated mesh-refinement algorithm which allows us to improve the numerical resolution used to evolve neutron star-black hole mergers.
- We introduce a new relativistic astrophysics code, SpECTRE, that combines a discontinuous Galerkin method with a task-based parallelism model. SpECTRE's goal is to achieve more accurate solutions for challenging relativistic astrophysics problems such as core-collapse supernovae and binary neutron star mergers. The robustness of the discontinuous Galerkin method allows for the use of high-resolution shock capturing methods in regions where (relativistic) shocks are found, while exploiting high-order accuracy in smooth regions. A task-based parallelism model allows efficient use of the largest supercomputers for problems with a heterogeneous workload over disparate spatial and temporal scales. We argue that the locality and algorithmic structure of discontinuous Galerkin methods will exhibit good scalability within a task-based parallelism framework. We demonstrate the code on a wide variety of challenging benchmark problems in (non)-relativistic (magneto)-hydrodynamics. We demonstrate the code's scalability including its strong scaling on the NCSA Blue Waters supercomputer up to the machine's full capacity of 22,380 nodes using 671,400 threads.
- Jul 28 2016 gr-qc arXiv:1607.07962v1The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole--neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as $S_{\rm BH}/M_{\rm BH}^2=0.99$.
- Jul 27 2016 astro-ph.HE gr-qc arXiv:1607.07450v2Binary neutron star mergers are promising sources of gravitational waves for ground-based detectors such as Advanced LIGO. Neutron-rich material ejected by these mergers may also be the main source of r-process elements in the Universe, while radioactive decays in the ejecta can power bright electromagnetic post-merger signals. Neutrino-matter interactions play a critical role in the evolution of the composition of the ejected material, which significantly impacts the outcome of nucleosynthesis and the properties of the associated electromagnetic signal. In this work, we present a simulation of a binary neutron star merger using an improved method for estimating the average neutrino energies in our energy-integrated neutrino transport scheme. These energy estimates are obtained by evolving the neutrino number density in addition to the neutrino energy and flux densities. We show that significant changes are observed in the composition of the polar ejecta when comparing our new results with earlier simulations in which the neutrino spectrum was assumed to be the same everywhere in optically thin regions. In particular, we find that material ejected in the polar regions is less neutron rich than previously estimated. Our new estimates of the composition of the polar ejecta make it more likely that the color and timescale of the electromagnetic signal depend on the orientation of the binary with respect to an observer's line-of-sight. These results also indicate that important observable properties of neutron star mergers are sensitive to the neutrino energy spectrum, and may need to be studied through simulations including a more accurate, energy-dependent neutrino transport scheme.
- Apr 05 2016 gr-qc arXiv:1604.00782v2We present results on the inspiral, merger, and post-merger evolution of a neutron star - neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for $\approx 22$ orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to further improve semi-analytical models used in gravitational wave data analysis, for example the effective one body models. We discuss in detail the improvements to SpEC's ability to simulate NSNS mergers, in particular mesh refined grids to better resolve the merger and post-merger phases. We provide a set of consistency checks and compare our results to NSNS merger simulations with the independent BAM code. We find agreement between them, which increases confidence in results obtained with either code. This work paves the way for future studies using long waveforms and more complex microphysical descriptions of neutron star matter in SpEC.
- Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging, neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star, as well as the merger signal for neutron-star--black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star--black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.
- Nov 17 2015 astro-ph.HE gr-qc arXiv:1511.04445v1Black holes accreting well below the Eddington rate are believed to have geometrically thick, optically thin, rotationally supported accretion discs in which the Coulomb mean free path is large compared to $GM/c^2$. In such an environment, the disc evolution may differ significantly from ideal magnetohydrodynamic predictions. We present non-ideal global axisymmetric simulations of geometrically thick discs around a rotating black hole. The simulations are carried out using a new code ${\rm\it grim}$, which evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines, and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. We find that the pressure anisotropy grows to match the magnetic pressure, at which point it saturates due to the mirror instability. The pressure anisotropy produces outward angular momentum transport with a magnitude comparable to that of MHD turbulence in the disc, and a significant increase in the temperature in the wall of the jet. We also find that, at least in our axisymmetric simulations, conduction has a small effect on the disc evolution because (1) the heat flux is constrained to be parallel to the field and the field is close to perpendicular to temperature gradients, and (2) the heat flux is choked by an increase in effective collisionality associated with the mirror instability.
- Oct 23 2015 astro-ph.HE gr-qc arXiv:1510.06398v2Neutron star mergers are among the most promising sources of gravitational waves for advanced ground-based detectors. These mergers are also expected to power bright electromagnetic signals, in the form of short gamma-ray bursts, infrared/optical transients, and radio emission. Simulations of these mergers with fully general relativistic codes are critical to understand the merger and post-merger gravitational wave signals and their neutrinos and electromagnetic counterparts. In this paper, we employ the SpEC code to simulate the merger of low-mass neutron star binaries (two $1.2M_\odot$ neutron stars) for a set of three nuclear-theory based, finite temperature equations of state. We show that the frequency peaks of the post-merger gravitational wave signal are in good agreement with predictions obtained from simulations using a simpler treatment of gravity. We find, however, that only the fundamental mode of the remnant is excited for long periods of time: emission at the secondary peaks is damped on a millisecond timescale in the simulated binaries. For such low-mass systems, the remnant is a massive neutron star which, depending on the equation of state, is either permanently stable or long-lived. We observe strong excitations of l=2, m=2 modes, both in the massive neutron star and in the form of hot, shocked tidal arms in the surrounding accretion torus. We estimate the neutrino emission of the remnant using a neutrino leakage scheme and, in one case, compare these results with a gray two-moment neutrino transport scheme. We confirm the complex geometry of the neutrino emission, also observed in previous simulations with neutrino leakage, and show explicitly the presence of important differences in the neutrino luminosity, disk composition, and outflow properties between the neutrino leakage and transport schemes.
- Sep 22 2015 gr-qc arXiv:1509.05782v3Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the nontidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of $<1$ radian over $\sim 15$ orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter ${\lambda}$.
- Aug 28 2015 gr-qc arXiv:1508.06986v1We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasi-local angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of $\sim 2\times 10^{-4}$. Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin- and orbit-precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to $\sim 0.1\%$. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.
- Black holes that accrete far below the Eddington limit are believed to accrete through a geometrically thick, optically thin, rotationally supported plasma that we will refer to as a radiatively inefficient accretion flow (RIAF). RIAFs are typically collisionless in the sense that the Coulomb mean free path is large compared to $GM/c^2$, and relativistically hot near the event horizon. In this paper we develop a phenomenological model for the plasma in RIAFs, motivated by the application to sources such as Sgr A* and M87. The model is derived using Israel-Stewart theory, which considers deviations up to second order from thermal equilibrium, but modified for a magnetized plasma. This leads to thermal conduction along magnetic field lines and a difference in pressure, parallel and perpendicular to the field lines (which is equivalent to anisotrotropic viscosity). In the non-relativistic limit, our model reduces to the widely used Braginskii theory of magnetized, weakly collisional plasmas. We compare our model to the existing literature on dissipative relativistic fluids, describe the linear theory of the plasma, and elucidate the physical meaning of the free parameters in the model. We also describe limits of the model when the conduction is saturated and when the viscosity implies a large pressure anisotropy. In future work, the formalism developed in this paper will be used in numerical models of RIAFs to assess the importance of non-ideal processes for the dynamics and radiative properties of slowly accreting black holes.
- Jun 05 2015 gr-qc arXiv:1506.01689v1Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the Spectral Einstein Code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation.
- Feb 17 2015 astro-ph.HE gr-qc arXiv:1502.04146v1We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of a disk after a black hole-neutron star merger. We use as initial data an existing general relativistic simulation of the merger of a neutron star of 1.4 solar mass with a black hole of 7 solar mass and dimensionless spin a/M=0.8. Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron to proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that the remnant is less neutron-rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects. Over the short timescale evolved, we do not observe purely neutrino-driven outflows. However, a small amount of material (3e-4Msun) is ejected in the polar region during the circularization of the disk. Most of that material is ejected early in the formation of the disk, and is fairly neutron rich. Through r-process nucleosynthesis, that material should produce high-opacity lanthanides in the polar region, and could thus affect the lightcurve of radioactively powered electromagnetic transients. We also show that by the end of the simulation, while the bulk of the disk is neutron-rich, its outer layers have a higher electron fraction. As that material would be the first to be unbound by disk outflows on longer timescales, the changes in Ye experienced during the formation of the disk could have an impact on the nucleosynthesis outputs from neutrino-driven and viscously-driven outflows. [Abridged]
- Sep 26 2014 gr-qc astro-ph.HE arXiv:1409.7159v1For highly compact neutron stars, constructing numerical initial data for black hole-neutron star binary evolutions is very difficult. We describe improvements to an earlier method that enable it to handle these more challenging cases. We examine the case of a 6:1 mass ratio system in inspiral close to merger, where the star is governed by a polytropic $\Gamma=2$, an SLy, or an LS220 equation of state. In particular, we are able to obtain a solution with a realistic LS220 equation of state for a star with compactness 0.26 and mass 1.98 $M_\odot$, which is representative of the highest reliably determined neutron star masses. For the SLy equation of state, we can obtain solutions with a comparable compactness of 0.25, while for a family of polytropic equations of state, we obtain solutions with compactness up to 0.21, the largest compactness that is stable in this family. These compactness values are significantly higher than any previously published results. We find that improvements in adapting the computational domain to the neutron star surface and in accounting for the center of mass drift of the system are the key ingredients allowing us to obtain these solutions.
- May 12 2014 astro-ph.HE gr-qc arXiv:1405.2144v1Dynamical instabilities in protoneutron stars may produce gravitational waves whose observation could shed light on the physics of core-collapse supernovae. When born with sufficient differential rotation, these stars are susceptible to a shear instability (the "low-T/|W| instability"), but such rotation can also amplify magnetic fields to strengths where they have a considerable impact on the dynamics of the stellar matter. Using a new magnetohydrodynamics module for the Spectral Einstein Code, we have simulated a differentially-rotating neutron star in full 3D to study the effects of magnetic fields on this instability. Though strong toroidal fields were predicted to suppress the low-T/|W| instability, we find that they do so only in a small range of field strengths. Below 4e13 G, poloidal seed fields do not wind up fast enough to have an effect before the instability saturates, while above 5e14 G, magnetic instabilities can actually amplify a global quadrupole mode (this threshold may be even lower in reality, as small-scale magnetic instabilities remain difficult to resolve numerically). Thus, the prospects for observing gravitational waves from such systems are not in fact diminished over most of the magnetic parameter space. Additionally, we report that the detailed development of the low-T/|W| instability, including its growth rate, depends strongly on the particular numerical methods used. The high-order methods we employ suggest that growth might be considerably slower than found in some previous simulations.
- May 07 2014 astro-ph.HE gr-qc arXiv:1405.1121v2We present a first exploration of the results of neutron star-black hole mergers using black hole masses in the most likely range of $7M_\odot-10M_\odot$, a neutrino leakage scheme, and a modeling of the neutron star material through a finite-temperature nuclear-theory based equation of state. In the range of black hole spins in which the neutron star is tidally disrupted ($\chi_{\rm BH}\gtrsim 0.7$), we show that the merger consistently produces large amounts of cool ($T\lesssim 1\,{\rm MeV}$), unbound, neutron-rich material ($M_{\rm ej}\sim 0.05M_\odot-0.20M_\odot$). A comparable amount of bound matter is initially divided between a hot disk ($T_{\rm max}\sim 15\,{\rm MeV}$) with typical neutrino luminosity $L_\nu\sim 10^{53}\,{\rm erg/s}$, and a cooler tidal tail. After a short period of rapid protonization of the disk lasting $\sim 10\,{\rm ms}$, the accretion disk cools down under the combined effects of the fall-back of cool material from the tail, continued accretion of the hottest material onto the black hole, and neutrino emission. As the temperature decreases, the disk progressively becomes more neutron-rich, with dimmer neutrino emission. This cooling process should stop once the viscous heating in the disk (not included in our simulations) balances the cooling. These mergers of neutron star-black hole binaries with black hole masses $M_{\rm BH}\sim 7M_\odot-10M_\odot$ and black hole spins high enough for the neutron star to disrupt provide promising candidates for the production of short gamma-ray bursts, of bright infrared post-merger signals due to the radioactive decay of unbound material, and of large amounts of r-process nuclei.
- Jul 30 2013 gr-qc astro-ph.CO arXiv:1307.7685v1We present the first direct comparison of numerical simulations of neutron star-black hole and black hole-black hole mergers in full general relativity. We focus on a configuration with non spinning objects and within the most likely range of mass ratio for neutron star-black hole systems (q=6). In this region of the parameter space, the neutron star is not tidally disrupted prior to merger, and we show that the two types of mergers appear remarkably similar. The effect of the presence of a neutron star on the gravitational wave signal is not only undetectable by the next generation of gravitational wave detectors, but also too small to be measured in the numerical simulations: even the plunge, merger and ringdown signals appear in perfect agreement for both types of binaries. The characteristics of the post-merger remnants are equally similar, with the masses of the final black holes agreeing within dM< 5 10^-4M_BH and their spins within da< 10^-3M_BH. The rate of periastron advance in the mixed binary agrees with previously published binary black hole results, and we use the inspiral waveforms to place constraints on the accuracy of our numerical simulations independent of algorithmic choices made for each type of binary. Overall, our results indicate that non-disrupting neutron star-black hole mergers are exceptionally well modeled by black hole-black hole mergers, and that given the absence of mass ejection, accretion disk formation, or differences in the gravitational wave signals, only electromagnetic precursors could prove the presence of a neutron star in low-spin systems of total mass ~10Msun, at least until the advent of gravitational wave detectors with a sensitivity comparable to that of the proposed Einstein Telescope.
- Apr 12 2013 astro-ph.HE gr-qc arXiv:1304.3384v3Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M_⊙ neutron star, 5.6 M_⊙ black hole), high spin (black hole J/M^2=0.9) system with the K_0=220 MeV Lattimer-Swesty equation of state. We find that about 0.08 M_⊙ of nuclear matter is ejected from the system, while another 0.3 M_⊙ forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (i) to make the disk much denser and more compact, (ii) to cause the average electron fraction Y_e of the disk to rise to about 0.2 and then gradually decrease again, and (iii) to gradually cool the disk. The disk is initially hot (T~6 MeV) and luminous in neutrinos (L_\nu~10^54 erg s^-1), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.
- Feb 27 2013 gr-qc astro-ph.HE arXiv:1302.6297v2Black hole-neutron star (BHNS) binaries are important sources of gravitational waves for second-generation interferometers, and BHNS mergers are also a proposed engine for short, hard gamma-ray bursts. The behavior of both the spacetime (and thus the emitted gravitational waves) and the neutron star matter in a BHNS merger depend strongly and nonlinearly on the black hole's spin. While there is a significant possibility that astrophysical black holes could have spins that are nearly extremal (i.e. near the theoretical maximum), to date fully relativistic simulations of BHNS binaries have included black-hole spins only up to $S/M^2$=0.9, which corresponds to the black hole having approximately half as much rotational energy as possible, given the black hole's mass. In this paper, we present a new simulation of a BHNS binary with a mass ratio $q=3$ and black-hole spin $S/M^2$=0.97, the highest simulated to date. We find that the black hole's large spin leads to the most massive accretion disk and the largest tidal tail outflow of any fully relativistic BHNS simulations to date, even exceeding the results implied by extrapolating results from simulations with lower black-hole spin. The disk appears to be remarkably stable. We also find that the high black-hole spin persists until shortly before the time of merger; afterwards, both merger and accretion spin down the black hole.
- Dec 20 2012 gr-qc astro-ph.HE arXiv:1212.4810v2Black hole-neutron star mergers resulting in the disruption of the neutron star and the formation of an accretion disk and/or the ejection of unbound material are prime candidates for the joint detection of gravitational-wave and electromagnetic signals when the next generation of gravitational-wave detectors comes online. However, the disruption of the neutron star and the properties of the post-merger remnant are very sensitive to the parameters of the binary. In this paper, we study the impact of the radius of the neutron star and the alignment of the black hole spin for systems within the range of mass ratio currently deemed most likely for field binaries (M_BH ~ 7 M_NS) and for black hole spins large enough for the neutron star to disrupt (J/M^2=0.9). We find that: (i) In this regime, the merger is particularly sensitive to the radius of the neutron star, with remnant masses varying from 0.3M_NS to 0.1M_NS for changes of only 2 km in the NS radius; (ii) 0.01-0.05M_sun of unbound material can be ejected with kinetic energy >10^51 ergs, a significant increase compared to low mass ratio, low spin binaries. This ejecta could power detectable optical and radio afterglows. (iii) Only a small fraction (<3%) of the Advanced LIGO events in this parameter range have gravitational-wave signals which could offer constraints on the equation of state of the neutron star. (iv) A misaligned black hole spin works against disk formation, with less neutron star material remaining outside of the black hole after merger, and a larger fraction of that material remaining in the tidal tail instead of the forming accretion disk. (v) Large kicks (v>300 km/s) can be given to the final black hole as a result of a precessing BHNS merger, when the disruption of the neutron star occurs just outside or within the innermost stable spherical orbit.
- Jul 27 2012 astro-ph.HE gr-qc arXiv:1207.6304v2Determining the final result of black hole-neutron star mergers, and in particular the amount of matter remaining outside the black hole at late times and its properties, has been one of the main motivations behind the numerical simulation of these systems. Black hole-neutron star binaries are amongst the most likely progenitors of short gamma-ray bursts --- as long as massive (probably a few percents of a solar mass), hot accretion disks are formed around the black hole. Whether this actually happens strongly depends on the physical characteristics of the system, and in particular on the mass ratio, the spin of the black hole, and the radius of the neutron star. We present here a simple two-parameter model, fitted to existing numerical results, for the determination of the mass remaining outside the black hole a few milliseconds after a black hole-neutron star merger (i.e. the combined mass of the accretion disk, the tidal tail, and the potential ejecta). This model predicts the remnant mass within a few percents of the mass of the neutron star, at least for remnant masses up to 20% of the neutron star mass. Results across the range of parameters deemed to be the most likely astrophysically are presented here. We find that, for 10 solar mass black holes, massive disks are only possible for large neutron stars (R>12km), or quasi-extremal black hole spins (a/M>0.9). We also use our model to discuss how the equation of state of the neutron star affects the final remnant, and the strong influence that this can have on the rate of short gamma-ray bursts produced by black hole-neutron star mergers.
- Nov 08 2011 gr-qc astro-ph.HE arXiv:1111.1677v2General relativistic simulations of black hole-neutron star mergers have currently been limited to low-mass black holes (less than 7 solar mass), even though population synthesis models indicate that a majority of mergers might involve more massive black holes (10 solar mass or more). We present the first general relativistic simulations of black hole-neutron star mergers with 10 solar mass black holes. For massive black holes, the tidal forces acting on the neutron star are usually too weak to disrupt the star before it reaches the innermost stable circular orbit of the black hole. Varying the spin of the black hole in the range a/M = 0.5-0.9, we find that mergers result in the disruption of the star and the formation of a massive accretion disk only for large spins a/M>0.7-0.9. From these results, we obtain updated constraints on the ability of BHNS mergers to be the progenitors of short gamma-ray bursts as a function of the mass and spin of the black hole. We also discuss the dependence of the gravitational wave signal on the black hole parameters, and provide waveforms and spectra from simulations beginning 7-8 orbits before merger.
- Jul 26 2010 astro-ph.HE gr-qc arXiv:1007.4203v2The spin of black holes in black hole-neutron star (BHNS) binaries can have a strong influence on the merger dynamics and the postmerger state; a wide variety of spin magnitudes and orientations are expected to occur in nature. In this paper, we report the first simulations in full general relativity of BHNS mergers with misaligned black hole spin. We vary the spin magnitude from a/m=0 to a/m=0.9 for aligned cases, and we vary the misalignment angle from 0 to 80 degrees for a/m=0.5. We restrict our study to 3:1 mass ratio systems and use a simple Gamma-law equation of state. We find that the misalignment angle has a strong effect on the mass of the postmerger accretion disk, but only for angles greater than ~ 40 degrees. Although the disk mass varies significantly with spin magnitude and misalignment angle, we find that all disks have very similar lifetimes ~ 100ms. Their thermal and rotational profiles are also very similar. For a misaligned merger, the disk is tilted with respect to the final black hole's spin axis. This will cause the disk to precess, but on a timescale longer than the accretion time. In all cases, we find promising setups for gamma-ray burst production: the disks are hot, thick, and hyperaccreting, and a baryon-clear region exists above the black hole.
- Dec 19 2009 astro-ph.HE gr-qc arXiv:0912.3528v1The merger dynamics of a black hole-neutron star (BHNS) binary is influenced by the neutron star equation of state (EoS) through the latter's effect on the neutron star's radius and on the character of the mass transfer onto the black hole. We study these effects by simulating a number of BHNS binaries in full general relativity using a mixed pseudospectral/finite difference code. We consider several models of the neutron star matter EoS, including Gamma=2 and Gamma=2.75 polytropes and the nuclear-theory based Shen EoS. For models using the Shen EoS, we consider two limits for the evolution of the composition: source-free advection and instantaneous beta-equilibrium. To focus on EoS effects, we fix the mass ratio to 3:1 and the initial aligned black hole spin to a/m=0.5 for all models. We confirm earlier studies which found that more compact stars create a stronger gravitational wave signal but a smaller postmerger accretion disk. We also vary the EoS while holding the compaction fixed. All mergers are qualitatively similar, but we find signatures of the EoS in the waveform and in the tail and disk structures.
- We present a code for solving the coupled Einstein-hydrodynamics equations to evolve relativistic, self-gravitating fluids. The Einstein field equations are solved in generalized harmonic coordinates on one grid using pseudospectral methods, while the fluids are evolved on another grid using shock-capturing finite difference or finite volume techniques. We show that the code accurately evolves equilibrium stars and accretion flows. Then we simulate an equal-mass nonspinning black hole-neutron star binary, evolving through the final four orbits of inspiral, through the merger, to the final stationary black hole. The gravitational waveform can be reliably extracted from the simulation.
- We present a new numerical scheme to solve the initial value problem for black hole-neutron star binaries. This method takes advantage of the flexibility and fast convergence of a multidomain spectral representation of the initial data to construct high-accuracy solutions at a relatively low computational cost. We provide convergence tests of the method for both isolated neutron stars and irrotational binaries. In the second case, we show that we can resolve the small inconsistencies that are part of the quasi-equilibrium formulation, and that these inconsistencies are significantly smaller than observed in previous works. The possibility of generating a wide variety of initial data is also demonstrated through two new configurations inspired by results from binary black holes. First, we show that choosing a modified Kerr-Schild conformal metric instead of a flat conformal metric allows for the construction of quasi-equilibrium binaries with a spinning black hole. Second, we construct binaries in low-eccentricity orbits, which are a better approximation to astrophysical binaries than quasi-equilibrium systems.