results for au:Dorland_W in:physics

- Jan 16 2018 physics.plasm-ph arXiv:1801.04317v1We present a method for stellarator coil design via gradient-based optimization of the coil-winding surface. The REGCOIL (Landreman 2017 Nucl. Fusion 57 046003) approach is used to obtain the coil shapes on the winding surface using a continuous current potential. We apply the adjoint method to calculate derivatives of the objective function, allowing for efficient computation of analytic gradients while eliminating the numerical noise of approximate derivatives. We are able to improve engineering properties of the coils by targeting the root-mean-squared current density in the objective function. We obtain winding surfaces for W7-X and HSX which simultaneously decrease the normal magnetic field on the plasma surface and increase the surface-averaged distance between the coils and the plasma in comparison with the actual winding surfaces. The coils computed on the optimized surfaces feature a smaller toroidal extent and curvature and increased inter-coil spacing. A technique for visualization of the sensitivity of figures of merit to normal surface displacement of the winding surface is presented, with potential applications for understanding engineering tolerances.
- Jan 15 2018 physics.plasm-ph arXiv:1801.04145v1Observational evidence in space and astrophysical plasmas with long collisional mean free path suggests that more massive charged particles may be preferentially heated. One possible mechanism for this is the turbulent cascade of energy from injection to dissipation scales, where the energy is converted to heat. Here we consider a simple system consisting of a magnetized plasma slab of electrons and a single ion species with a cross-field density gradient. We show that such a system is subject to an electron drift wave instability, known as the universal instability, which is stabilized only when the electron and ion thermal speeds are equal. For unequal thermal speeds, we find that the instability gives rise to turbulent energy exchange between ions and electrons that acts to equalize the thermal speeds. Consequently, this turbulent heating tends to equalize the component temperatures of pair plasmas and to heat ions to much higher temperatures than electrons for conventional mass-ratio plasmas.
- Aug 15 2017 physics.plasm-ph arXiv:1708.04029v1First-principles simulations of tokamak turbulence have proven to be of great value in recent decades. We develop a pseudo-spectral velocity formulation of the turbulence equations that smoothly interpolates between the highly efficient but lower resolution 3D gyrofluid representation and the conventional but more expensive 5D gyrokinetic representation. Our formulation is a projection of the nonlinear gyrokinetic equation onto a Laguerre-Hermite velocity-space basis. We discuss issues related to collisions, closures, and entropy. While any collision operator can be used in the formulation, we highlight a model operator that has a particularly sparse Laguerre-Hermite representation, while satisfying conservation laws and the H theorem. Free streaming, magnetic drifts, and nonlinear phase mixing each give rise to closure problems, which we discuss in relation to the instabilities of interest and to free energy conservation. We show that the model is capable of reproducing gyrokinetic results for linear instabilities and zonal flow dynamics. Thus the final model is appropriate for the study of instabilities, turbulence, and transport in a wide range of geometries, including tokamaks and stellarators.
- May 17 2017 physics.plasm-ph astro-ph.SR math.NA physics.comp-ph physics.space-ph arXiv:1705.05407v3We present a new algorithm for the discretization of the Vlasov-Maxwell system of equations for the study of plasmas in the kinetic regime. Using the discontinuous Galerkin finite element method for the spatial discretization, we obtain a high order accurate solution for the plasma's distribution function. Time stepping for the distribution function is done explicitly with a third order strong-stability preserving Runge-Kutta method. Since the Vlasov equation in the Vlasov-Maxwell system is a high dimensional transport equation, up to six dimensions plus time, we take special care to note various features we have implemented to reduce the cost while maintaining the integrity of the solution, including the use of a reduced high-order basis set. A series of benchmarks, from simple wave and shock calculations, to a five dimensional turbulence simulation, are presented to verify the efficacy of our set of numerical methods, as well as demonstrate the power of the implemented features.
- Apr 11 2017 physics.plasm-ph arXiv:1704.02830v2We investigate the effect of varying the ion temperature gradient (ITG) and toroidal equilibrium scale sheared flow on ion-scale turbulence in the outer core of MAST by means of local gyrokinetic simulations. We show that nonlinear simulations reproduce the experimental ion heat flux and that the experimentally measured values of the ITG and the flow shear lie close to the turbulence threshold. We demonstrate that the system is subcritical in the presence of flow shear, i.e., the system is formally stable to small perturbations, but transitions to a turbulent state given a large enough initial perturbation. We propose that the transition to subcritical turbulence occurs via an intermediate state dominated by low number of coherent long-lived structures, close to threshold, which increase in number as the system is taken away from the threshold into the more strongly turbulent regime, until they fill the domain and a more conventional turbulence emerges. We show that the properties of turbulence are effectively functions of the distance to threshold, as quantified by the ion heat flux. We make quantitative comparisons of correlation lengths, times, and amplitudes between our simulations and experimental measurements using the MAST BES diagnostic. We find reasonable agreement of the correlation properties, most notably of the correlation time, for which significant discrepancies were found in previous numerical studies of MAST turbulence.
- Mar 20 2017 physics.plasm-ph arXiv:1703.06129v2Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria with toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the Variational Moments Equilibrium Code (VMEC). Neoclassical transport quantities in the presence of these error fields are calculated using the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver (SFINCS). These calculations fully account for $E_r$, flux surface shaping, multiple species, magnitude of ripple, and collisionality rather than applying approximate analytic NTV formulae. As NTV is a complicated nonlinear function of $E_r$, we study its behavior over a plausible range of $E_r$. We estimate the toroidal flow, and hence $E_r$, using a semi-analytic turbulent intrinsic rotation model and NUBEAM calculations of neutral beam torque. The NTV from the $\rvert n \rvert = 18$ ripple dominates that from lower $n$ perturbations of the TBMs. With the inclusion of FIs, the magnitude of NTV torque is reduced by about 75% near the edge. We present comparisons of several models of tangential magnetic drifts, finding appreciable differences only for superbanana-plateau transport at small $E_r$. We find the scaling of calculated NTV torque with ripple magnitude to indicate that ripple-trapping may be a significant mechanism for NTV in ITER. The computed NTV torque without ferritic components is comparable in magnitude to the NBI and intrinsic turbulent torques and will likely damp rotation, but the NTV torque is significantly reduced by the planned ferritic inserts.
- Nov 21 2016 physics.plasm-ph arXiv:1611.06047v1New results from MAST are presented that focus on validating models in order to extrapolate to future devices. Measurements during start-up experiments have shown how the bulk ion temperature rise scales with the square of the reconnecting field. During the current ramp up models are not able to correctly predict the current diffusion. Experiments have been performed looking at edge and core turbulence. At the edge detailed studies have revealed how filament characteristic are responsible for determining the near and far SOL density profiles. In the core the intrinsic rotation and electron scale turbulence have been measured. The role that the fast ion gradient has on redistributing fast ions through fishbone modes has led to a redesign of the neutral beam injector on MAST Upgrade. In H-mode the turbulence at the pedestal top has been shown to be consistent with being due to electron temperature gradient modes. A reconnection process appears to occur during ELMs and the number of filaments released determines the power profile at the divertor. Resonant magnetic perturbations can mitigate ELMs provided the edge peeling response is maximised and the core kink response minimised. The mitigation of intrinsic error fields with toroidal mode number n>1 has been shown to be important for plasma performance.
- Sep 01 2016 physics.plasm-ph arXiv:1608.08812v3The confinement of heat in the core of a magnetic fusion reactor is optimised using a multidimensional optimisation algorithm. For the first time in such a study, the loss of heat due to turbulence is modelled at every stage using first-principles nonlinear simulations which accurately capture the turbulent cascade and large-scale zonal flows. The simulations utilise a novel approach, with gyrofluid treatment of the small-scale drift waves and gyrokinetic treatment of the large-scale zonal flows. A simple near-circular equilibrium with standard parameters is chosen as the initial condition. The figure of merit, fusion power per unit volume, is calculated, and then two control parameters, the elongation and triangularity of the outer flux surface, are varied, with the algorithm seeking to optimise the chosen figure of merit. A two-fold increase in the plasma power per unit volume is achieved by moving to higher elongation and strongly negative triangularity.
- Aug 29 2016 physics.plasm-ph arXiv:1608.07311v2By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Our results indicate that heated minorities are more strongly affected by microturbulence than injected fast ions. The physical interpretation of this difference provides a possible explanation for the observed synergy when NBI heating is combined with ICRH. Furthermore, we move beyond the trace approximation to develop a model which allows one to easily account for the reduction of anomalous transport due to the presence of fast ions in electrostatic turbulence.
- Jul 28 2016 physics.plasm-ph arXiv:1607.08173v5Tokamak turbulence, driven by the ion-temperature gradient and occurring in the presence of flow shear, is investigated by means of local, ion-scale, electrostatic gyrokinetic simulations (with both kinetic ions and electrons) of the conditions in the outer core of the Mega-Ampere Spherical Tokamak (MAST). A parameter scan in the local values of the ion-temperature gradient and flow shear is performed. It is demonstrated that the experimentally observed state is near the stability threshold and that this stability threshold is nonlinear: sheared turbulence is subcritical, i.e. the system is formally stable to small perturbations, but, given a large enough initial perturbation, it transitions to a turbulent state. A scenario for such a transition is proposed and supported by numerical results: close to threshold, the nonlinear saturated state and the associated anomalous heat transport are dominated by long-lived coherent structures, which drift across the domain, have finite amplitudes, but are not volume filling; as the system is taken away from the threshold into the more unstable regime, the number of these structures increases until they overlap and a more conventional chaotic state emerges. Whereas this appears to represent a new scenario for transition to turbulence in tokamak plasmas, it is reminiscent of the behaviour of other subcritically turbulent systems, e.g. pipe flows and Keplerian magnetorotational accretion flows.
- Jul 25 2016 physics.plasm-ph arXiv:1607.06752v2In electrostatic simulations of MAST plasma at electron-gyroradius scales, using the local flux-tube gyrokinetic code GS2 with adiabatic ions, we find that the long-time saturated electron heat flux (the level most relevant to energy transport) decreases as the electron collisionality decreases. At early simulation times, the heat flux "quasi-saturates" without any strong dependence on collisionality, and with the turbulence dominated by streamer-like radially elongated structures. However, the zonal fluctuation component continues to grow slowly until much later times, eventually leading to a new saturated state dominated by zonal modes and with the heat flux proportional to the collision rate, in approximate agreement with the experimentally observed collisionality scaling of the energy confinement in MAST. We outline an explanation of this effect based on a model of ETG turbulence dominated by zonal-nonzonal interactions and on an analytically derived scaling of the zonal-mode damping rate with the electron-ion collisionality. Improved energy confinement with decreasing collisionality is favourable towards the performance of future, hotter devices.
- Mar 11 2016 physics.plasm-ph arXiv:1603.03279v1The velocity-space distribution of alpha particles born in fusion devices is subject to modification at moderate energies due to turbulent transport. Therefore, one must calculate the evolution of an equilibrium distribution whose functional form is not known \empha priori. Using a novel technique, applicable to any trace impurity, we have made this calculation not only possible, but particularly efficient. We demonstrate a microturbulence-induced departure from the local slowing-down distribution, an inversion of the energy distribution, and associated modifications to the alpha heating and pressure profiles in an ITER-like scenario.
- Dec 15 2015 physics.plasm-ph arXiv:1512.03984v3The $\delta f$ particle-in-cell algorithm has been a useful tool in studying the physics of plasmas, particularly turbulent magnetized plasmas in the context of gyrokinetics. The reduction in noise due to not having to resolve the full distribution function indicates an efficiency advantage over standard ("full-$f$") particle-in-cell. Despite its successes, the algorithm behaves strangely in some circumstances. In this work, we document a fully-resolved numerical instability that occurs in the simplest of multiple-species test cases: the electrostatic $\Omega_H$ mode. There is also a poorly-understood numerical instability that occurs when one is under-resolved in particle number, which may require a prohibitively large number of particles to stabilize. Both of these are independent of the time-stepping scheme, and we conclude that they exist if the time advancement were exact. The exact analytic form of the algorithm is presented, and several schemes for mitigating these instabilities are presented.
- A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g., ITG turbulence) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating ExB flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau-damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the "anti-phase-mixing" effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wave-number space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the "critical balance" between linear and nonlinear timescales (which for high Hermite moments splits into two thresholds, one demarcating the wave-number region where phase mixing predominates, the other where plasma echo does).
- May 12 2015 physics.plasm-ph astro-ph.SR arXiv:1505.02649v1We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations [Zocco & Schekochihin, Phys. Plasmas 18, 102309 (2011)] (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., Astrophys. J. Suppl. 182:310 (2009)]. Two main applications of these equations are magnetised (Alfvenic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge-Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, including a detailed analysis of 2D and 3D Orszag-Tang-type decaying turbulence, both in fluid and kinetic regimes.
- Jan 14 2015 physics.plasm-ph arXiv:1501.02980v1In this work we numerically demonstrate both significant transient (i.e. non-modal) linear amplification and sustained nonlinear turbulence in a kinetic plasma system with no unstable eigenmodes. The particular system considered is an electrostatic plasma slab with magnetic shear, kinetic electrons and ions, weak collisions, and a density gradient, but with no temperature gradient. In contrast to hydrodynamic examples of non-modal growth and subcritical turbulence, here there is no sheared flow in the equilibrium. Significant transient linear amplification is found when the magnetic shear and collisionality are weak. It is also demonstrated that nonlinear turbulence can be sustained if initialized at sufficient amplitude. We prove these two phenomena are related: when sustained turbulence occurs without unstable eigenmodes, states that are typical of the turbulence must yield transient linear amplification of the gyrokinetic free energy.
- Nov 10 2014 physics.plasm-ph arXiv:1411.1807v2We demonstrate that the universal mode driven by the density gradient in a plasma slab can be absolutely unstable even in the presence of reasonable magnetic shear. Previous studies from the 1970s that reached the opposite conclusion used an eigenmode equation limited to $L_x \gg \rho_i$, where $L_x$ is the scale length of the mode in the radial direction, and $\rho_i$ is the ion Larmor radius. Here we instead use a gyrokinetic approach which does not have this same limitation. Instability is found for perpendicular wavenumbers $k_y$ in the range $0.7 \lesssim k_y \rho_i \lesssim 100$, and for sufficiently weak magnetic shear: $L_s / L_n \ge 17$, where $L_s$ and $L_n$ are the scale lengths of magnetic shear and density. Thus, the plasma drift wave in a sheared magnetic field may be unstable even with no temperature gradients, no trapped particles, and no magnetic curvature.
- Aug 22 2014 physics.plasm-ph arXiv:1408.4967v1To rigorously model fast ions in fusion plasmas, a non-Maxwellian equilibrium distribution must be used. In the work, the response of high-energy alpha particles to electrostatic turbulence has been analyzed for several different tokamak parameters. Our results are consistent with known scalings and experimental evidence that alpha particles are generally well-confined: on the order of several seconds. It is also confirmed that the effect of alphas on the turbulence is negligible at realistically low concentrations, consistent with linear theory. It is demonstrated that the usual practice of using a high-temperature Maxwellian gives incorrect estimates for the radial alpha particle flux, and a method of correcting it is provided. Furthermore, we see that the timescales associated with collisions and transport compete at moderate energies, calling into question the assumption that alpha particles remain confined to a flux surface that is used in the derivation of the slowing-down distribution.
- Mar 26 2014 physics.plasm-ph arXiv:1403.6257v3A linearised kinetic equation describing electrostatic perturbations of a Maxwellian equilibrium in a weakly collisional plasma forced by a random source is considered. The problem is treated as a kinetic analogue of the Langevin equation and the corresponding fluctuation-dissipation theorem is derived. This kinetic fluctuation-dissipation theorem reduces to the standard "fluid" one in the regime where the Landau damping rate is small and the system has no real frequency; in this case the simplest possible Landau-fluid closure of the kinetic equation coincides with the standard Langevin equation. Phase mixing of density fluctuations and emergence of fine scales in velocity space is diagnosed as a constant flux of free energy in Hermite space; the fluctuation-dissipation theorem for the perturbations of the distribution function is derived, in the form of a universal expression for the Hermite spectrum of the free energy. Finite-collisionality effects are included. This work is aimed at establishing the simplest fluctuation-dissipation relations for a kinetic plasma, clarifying the connection between Landau and Hermite-space formalisms, and setting a benchmark case for a study of phase mixing in turbulent plasmas.
- Mar 14 2014 physics.plasm-ph arXiv:1403.3293v2Recent work demonstrated that breaking the up-down symmetry of tokamak flux surfaces removes a constraint that limits intrinsic momentum transport, and hence toroidal rotation, to be small. We show, through MHD analysis, that ellipticity is most effective at introducing up-down asymmetry throughout the plasma. We detail an extension to GS2, a local $\delta f$ gyrokinetic code that self-consistently calculates momentum transport, to permit up-down asymmetric configurations. Tokamaks with tilted elliptical poloidal cross-sections were simulated to determine nonlinear momentum transport. The results, which are consistent with experiment in magnitude, suggest that a toroidal velocity gradient, $(\partial u_{\zeta i} / \partial \rho) / v_{th i}$, of 5% of the temperature gradient, $(\partial T_{i} / \partial \rho) / T_{i}$, is sustainable. Here $v_{th i}$ is the ion thermal speed, $u_{\zeta i}$ is the ion toroidal mean flow, $\rho$ is the minor radial coordinate normalized to the tokamak minor radius, and $T_{i}$ is the ion temperature. Since other intrinsic momentum transport mechanisms scale poorly to larger machines, these results indicate that up-down asymmetry is the most feasible method to generate the current experimentally-measured rotation levels in reactor-sized devices.
- Results of the first validation of large guide field, $B_g / \delta B_0 \gg 1$, gyrokinetic simulations of magnetic reconnection at a fusion and solar corona relevant $\beta_i = 0.01$ and solar wind relevant $\beta_i = 1$ are presented, where $\delta B_0$ is the reconnecting field. Particle-in-cell (PIC) simulations scan a wide range of guide magnetic field strength to test for convergence to the gyrokinetic limit. The gyrokinetic simulations display a high degree of morphological symmetry, to which the PIC simulations converge when $\beta_i B_g / \delta B_0 \gtrsim 1$ and $B_g / \delta B_0 \gg 1$. In the regime of convergence, the reconnection rate, relative energy conversion, and overall magnitudes are found to match well between the PIC and gyrokinetic simulations, implying that gyrokinetics is capable of making accurate predictions well outside its regime of formal applicability. These results imply that in the large guide field limit many quantities resulting from the nonlinear evolution of reconnection scale linearly with the guide field.
- Jun 07 2013 astro-ph.SR physics.plasm-ph arXiv:1306.1456v1This paper presents the numerical verification of an asymptotic analytical solution for the nonlinear interaction between counterpropagating Alfven waves, the fundamental building block of astrophysical plasma turbulence. The analytical solution, derived in the weak turbulence limit using the equations of incompressible MHD, is compared to a nonlinear gyrokinetic simulation of an Alfven wave collision. The agreement between these methods signifies that the incompressible solution satisfactorily describes the essential dynamics of the nonlinear energy transfer, even under the weakly collisional plasma conditions relevant to many astrophysical environments.
- A unique method of driving Alfvenic turbulence via an oscillating Langevin antenna is presented. This method of driving is motivated by a desire to inject energy into a finite domain numerical simulation in a manner that models the nonlinear transfer of energy from fluctuations in the turbulent cascade at scales larger than the simulation domain.. The oscillating Langevin antenna is shown to capture the essential features of the larger scale turbulence and efficiently couple to the plasma, generating steady-state turbulence within one characteristic turnaround time. The antenna is also sufficiently flexible to explore both strong and weak regimes of Alfvenic plasma turbulence.
- Sep 24 2012 physics.plasm-ph arXiv:1209.4782v4This paper presents a complete theoretical framework for plasma turbulence and transport in tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio of the gyroradius to the equilibrium scale length. Proceeding order-by-order in this expansion, a framework for plasma turbulence is developed. It comprises an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equillibrium is obtained from the Grad-Shafranov equation for a rotating plasma and the slow (resistive) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the high-flow gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local cascade of free energy. Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical corrections and the fluctuations act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived. Total energy is conserved and there is no net turbulent heating. Entropy is produced by the action of fluxes flattening gradients, Ohmic heating, and the equilibration of mean temperatures. Finally, this framework is condensed, in the low-Mach-number limit, to a concise set of equations suitable for numerical implementation.
- Aug 08 2012 physics.plasm-ph arXiv:1208.1369v2In magnetized plasmas, a turbulent cascade occurs in phase space at scales smaller than the thermal Larmor radius ("sub-Larmor scales") [Phys. Rev. Lett. 103, 015003 (2009)]. When the turbulence is restricted to two spatial dimensions perpendicular to the background magnetic field, two independent cascades may take place simultaneously because of the presence of two collisionless invariants. In the present work, freely decaying turbulence of two-dimensional electrostatic gyrokinetics is investigated by means of phenomenological theory and direct numerical simulations. A dual cascade (forward and inverse cascades) is observed in velocity space as well as in position space, which we diagnose by means of nonlinear transfer functions for the collisionless invariants. We find that the turbulence tends to a time-asymptotic state, dominated by a single scale that grows in time. A theory of this asymptotic state is derived in the form of decay laws. Each case that we study falls into one of three regimes (weakly collisional, marginal, and strongly collisional), determined by a dimensionless number D*, a quantity analogous to the Reynolds number. The marginal state is marked by a critical number D* = D0 that is preserved in time. Turbulence initialized above this value become increasingly inertial in time, evolving toward larger and larger D*; turbulence initialized below D0 become more and more collisional, decaying to progressively smaller D*.
- Jul 24 2012 physics.plasm-ph physics.space-ph arXiv:1207.5175v1Scaling laws for the transport and heating of trace heavy ions in low-frequency, magnetized plasma turbulence are derived and compared with direct numerical simulations. The predicted dependences of turbulent fluxes and heating on ion charge and mass number are found to agree with numerical results for both stationary and differentially rotating plasmas. Heavy ion momentum transport is found to increase with mass, and heavy ions are found to be preferentially heated, implying a mass-dependent ion temperature for very weakly collisional plasmas and for partially-ionized heavy ions in strongly rotating plasmas.
- Jun 05 2012 physics.plasm-ph arXiv:1206.0584v4In gyrokinetic theory there are two quadratic measures of fluctuation energy, left invariant under nonlinear interactions, that constrain the turbulence. The recent work of Plunk and Tatsuno [Phys. Rev. Lett. 106, 165003 (2011)] reported on the novel consequences that this constraint has on the direction and locality of spectral energy transfer. This paper builds on that work. We provide detailed analysis in support of the results of Plunk and Tatsuno but also significantly broaden the scope and use additional methods to address the problem of energy transfer. The perspective taken here is that the fluctuation energies are not merely formal invariants of an idealized model (two-dimensional gyrokinetics) but are general measures of gyrokinetic turbulence, i.e. quantities that can be used to predict the behavior of the turbulence. Though many open questions remain, this paper collects evidence in favor of this perspective by demonstrating in several contexts that constrained spectral energy transfer governs the dynamics.
- Mar 30 2012 physics.plasm-ph arXiv:1203.6455v1Sheared toroidal flows can cause bifurcations to zero-turbulent-transport states in tokamak plasmas. The maximum temperature gradients that can be reached are limited by subcritical turbulence driven by the parallel velocity gradient. Here it is shown that q/\epsilon (magnetic field pitch/inverse aspect ratio) is a critical control parameter for sheared tokamak turbulence. By reducing q/\epsilon, far higher temperature gradients can be achieved without triggering turbulence, in some instances comparable to those found experimentally in transport barriers. The zero-turbulence manifold is mapped out, in the zero-magnetic-shear limit, over the parameter space (\gamma_E, q/\epsilon, R/L_T), where \gamma_E is the perpendicular flow shear and R/L_T is the normalised inverse temperature gradient scale. The extent to which it can be constructed from linear theory is discussed.
- Oct 17 2011 physics.plasm-ph arXiv:1110.3277v1Recent gyrokinetic stability calculations have revealed that the spherical tokamak is susceptible to tearing parity instabilities with length scales of a few ion Larmor radii perpendicular to the magnetic field lines. Here we investigate this 'micro-tearing' mode in greater detail to uncover its key characteristics, and compare it with existing theoretical models of the phenomenon. This has been accomplished using a full numerical solution of the linear gyrokinetic-Maxwell equations. Importantly, the instability is found to be driven by the free energy in the electron temperature gradient as described in the literature. However, our calculations suggest it is not substantially affected by either of the destabilising mechanisms proposed in previous theoretical models. Instead the instability is destabilised by interactions with magnetic drifts, and the electrostatic potential. Further calculations reveal that the mode is not significantly destabilised by the flux surface shaping or the large trapped particle fraction present in the spherical tokamak. Its prevalence in spherical tokamak plasmas is primarily due to the higher value of plasma \beta, and the enhanced magnetic drifts due to the smaller radius of curvature.
- Sep 22 2011 physics.plasm-ph arXiv:1109.4558v1The nonlinear gyrokinetic code GS2 has been extended to treat non-axisymmetric stellarator geometry. Electromagnetic perturbations and multiple trapped particle regions are allowed. Here, linear, collisionless, electrostatic simulations of the quasi-axisymmetric, three-field period National Compact Stellarator Experiment (NCSX) design QAS3-C82 have been successfully benchmarked against the eigenvalue code FULL. Quantitatively, the linear stability calculations of GS2 and FULL agree to within ~10%.
- Sep 20 2011 astro-ph.SR physics.plasm-ph arXiv:1109.4158v1A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
- Jul 30 2011 physics.plasm-ph arXiv:1107.5842v1Linear gyrokinetic simulations covering the collisional -- collisionless transitional regime of the tearing instability are performed. It is shown that the growth rate scaling with collisionality agrees well with that predicted by a two-fluid theory for a low plasma beta case in which ion kinetic dynamics are negligible. Electron wave-particle interactions (Landau damping), finite Larmor radius, and other kinetic effects invalidate the fluid theory in the collisionless regime, in which a general non-polytropic equation of state for pressure (temperature) perturbations should be considered. We also vary the ratio of the background ion to electron temperatures, and show that the scalings expected from existing calculations can be recovered, but only in the limit of very low beta.
- The gyrokinetic simulation code AstroGK is developed to study fundamental aspects of kinetic plasmas and for applications mainly to astrophysical problems. AstroGK is an Eulerian slab code that solves the electromagnetic Gyrokinetic-Maxwell equations in five-dimensional phase space, and is derived from the existing gyrokinetics code GS2 by removing magnetic geometry effects. Algorithms used in the code are described. The code is benchmarked using linear and nonlinear problems. Serial and parallel performance scalings are also presented.
- Two-dimensional electrostatic turbulence in magnetized weakly-collisional plasmas exhibits a cascade of entropy in phase space [Phys. Rev. Lett. 103, 015003 (2009)]. At scales smaller than the gyroradius, this cascade is characterized by the dimensionless ratio D of the collision time to the eddy turnover time measured at the scale of the thermal Larmor radius. When D >> 1, a broad spectrum of fluctuations at sub-Larmor scales is found in both position and velocity space. The distribution function develops structure as a function of v_perp, the velocity coordinate perpendicular to the local magnetic field. The cascade shows a local-scale nonlinear interaction in both position and velocity spaces, and Kolmogorov's scaling theory can be extended into phase space.
- Dec 11 2009 physics.plasm-ph arXiv:0912.1974v1Direct coupling between a transport solver and local, nonlinear gyrokinetic calculations using the multiscale gyrokinetic code TRINITY [M. Barnes, Ph.D. thesis, arxiv:0901.2868] is described. The coupling of the microscopic and macroscopic physics is done within the framework of multiscale gyrokinetic theory, of which we present the assumptions and key results. An assumption of scale separation in space and time allows for the simulation of turbulence in small regions of the space-time grid, which are embedded in a coarse grid on which the transport equations are implicitly evolved. This leads to a reduction in computational expense of several orders of magnitude, making first-principles simulations of the full fusion device volume over the confinement time feasible on current computing resources. Numerical results from TRINITY simulations are presented and compared with experimental data from JET and ASDEX Upgrade plasmas.
- Jul 28 2009 physics.plasm-ph arXiv:0907.4413v1Many plasmas of interest to the astrophysical and fusion communities are weakly collisional. In such plasmas, small scales can develop in the distribution of particle velocities, potentially affecting observable quantities such as turbulent fluxes. Consequently, it is necessary to monitor velocity space resolution in gyrokinetic simulations. In this paper, we present a set of computationally efficient diagnostics for measuring velocity space resolution in gyrokinetic simulations and apply them to a range of plasma physics phenomena using the continuum gyrokinetic code GS2. For the cases considered here, it is found that the use of a collisionality at or below experimental values allows for the resolution of plasma dynamics with relatively few velocity space grid points. Additionally, we describe implementation of an adaptive collision frequency which can be used to improve velocity space resolution in the collisionless regime, where results are expected to be independent of collision frequency.
- Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear decorrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.
- Sep 24 2008 physics.plasm-ph arXiv:0809.3945v2A set of key properties for an ideal dissipation scheme in gyrokinetic simulations is proposed, and implementation of a model collision operator satisfying these properties is described. This operator is based on the exact linearized test-particle collision operator, with approximations to the field-particle terms that preserve conservation laws and an H-Theorem. It includes energy diffusion, pitch-angle scattering, and finite Larmor radius effects corresponding to classical (real-space) diffusion. The numerical implementation in the continuum gyrokinetic code GS2 is fully implicit and guarantees exact satisfaction of conservation properties. Numerical results are presented showing that the correct physics is captured over the entire range of collisionalities, from the collisionless to the strongly collisional regimes, without recourse to artificial dissipation.
- Aug 12 2008 physics.plasm-ph physics.comp-ph arXiv:0808.1300v2A new analytically and numerically manageable model collision operator is developed specifically for turbulence simulations. The like-particle collision operator includes both pitch-angle scattering and energy diffusion and satisfies the physical constraints required for collision operators: it conserves particles, momentum and energy, obeys Boltzmann's H-theorem (collisions cannot decrease entropy), vanishes on a Maxwellian, and efficiently dissipates small-scale structure in the velocity space. The process of transforming this collision operator into the gyroaveraged form for use in gyrokinetic simulations is detailed. The gyroaveraged model operator is shown to have more suitable behavior at small scales in phase space than previously suggested models. A model operator for electron-ion collisions is also presented.
- Jul 29 2008 physics.plasm-ph physics.flu-dyn arXiv:0807.4516v1Finite Larmor radius (FLR) effects on non-diffusive transport in a prototypical zonal flow with drift waves are studied in the context of a simplified chaotic transport model. The model consists of a superposition of drift waves of the linearized Hasegawa-Mima equation and a zonal shear flow perpendicular to the density gradient. High frequency FLR effects are incorporated by gyroaveraging the ExB velocity. Transport in the direction of the density gradient is negligible and we therefore focus on transport parallel to the zonal flows. A prescribed asymmetry produces strongly asymmetric non- Gaussian PDFs of particle displacements, with Lévy flights in one direction but not the other. For zero Larmor radius, a transition is observed in the scaling of the second moment of particle displacements. However, FLR effects seem to eliminate this transition. The PDFs of trapping and flight events show clear evidence of algebraic scaling with decay exponents depending on the value of the Larmor radii. The shape and spatio-temporal self-similar anomalous scaling of the PDFs of particle displacements are reproduced accurately with a neutral, asymmetric effective fractional diffusion model.
- This paper describes a conceptual framework for understanding kinetic plasma turbulence as a generalized form of energy cascade in phase space. It is emphasized that conversion of turbulent energy into thermodynamic heat is only achievable in the presence of some (however small) degree of collisionality. The smallness of the collision rate is compensated by the emergence of small-scale structure in the velocity space. For gyrokinetic turbulence, a nonlinear perpendicular phase mixing mechanism is identified and described as a turbulent cascade of entropy fluctuations simultaneously occurring at spatial scales smaller than the ion gyroscale and in velocity space. Scaling relations for the resulting fluctuation spectra are derived. An estimate for the collisional cutoff is provided. The importance of adequately modeling and resolving collisions in gyrokinetic simulations is biefly discussed, as well as the relevance of these results to understanding the dissipation-range turbulence in the solar wind and the electrostatic microturbulence in fusion plasmas.
- We present a theoretical framework for plasma turbulence in astrophysical plasmas (solar wind, interstellar medium, galaxy clusters, accretion disks). The key assumptions are that the turbulence is anisotropic with respect to the mean magnetic field and frequencies are low compared to the ion cyclotron frequency. The energy injected at the outer scale scale has to be converted into heat, which ultimately cannot be done without collisions. A KINETIC CASCADE develops that brings the energy to collisional scales both in space and velocity. Its nature depends on the physics of plasma fluctuations. In each of the physically distinct scale ranges, the kinetic problem is systematically reduced to a more tractable set of equations. In the "inertial range" above the ion gyroscale, the kinetic cascade splits into a cascade of Alfvenic fluctuations, which are governed by the RMHD equations at both the collisional and collisionless scales, and a passive cascade of compressive fluctuations, which obey a linear kinetic equation along the moving field lines associated with the Alfvenic component. In the "dissipation range" between the ion and electron gyroscales, there are again two cascades: the kinetic-Alfven-wave (KAW) cascade governed by two fluid-like Electron RMHD equations and a passive phase-space cascade of ion entropy fluctuations. The latter cascade brings the energy of the inertial-range fluctuations that was damped by collisionless wave-particle interaction at the ion gyroscale to collisional scales in the phase space and leads to ion heating. The KAW energy is similarly damped at the electron gyroscale and converted into electron heat. Kolmogorov-style scaling relations are derived for these cascades. Astrophysical and space-physical applications are discussed in detail.
- We study the nonlinear evolution of the resistive tearing mode in slab geometry in two dimensions. We show that, in the strongly driven regime (large Delta'), a collapse of the X-point occurs once the island width exceeds a certain critical value ~1/Delta'. A current sheet is formed and the reconnection is exponential in time with a growth rate ~eta^1/2, where eta is the resistivity. If the aspect ratio of the current sheet is sufficiently large, the sheet can itself become tearing-mode unstable, giving rise to secondary islands, which then coalesce with the original island. The saturated state depends on the value of Delta'. For small Delta', the saturation amplitude is ~Delta' and quantitatively agrees with the theoretical prediction. If Delta' is large enough for the X-point collapse to have occured, the saturation amplitude increases noticeably and becomes independent of Delta'.
- Jul 13 2004 physics.plasm-ph physics.space-ph arXiv:physics/0407047v1This is a brief account of our numerical study of the tearing mode reconnection. We demonstrate two main points. First, we show that, given sufficiently small resistivity, the Rutherford regime always exists; larger values of Delta' require smaller values of resistivity. Rutherford's negligible-inertia assumption is validated and the asymptotically linear dependence of the time derivative of the island width on the resistivity and Delta' is confirmed. Second, we find that, at large Delta', the Rutherford regime is followed by a nonlinear stage of fast growth linked to X-point collapse and formation of a current sheet. This causes the reconnection to become Sweet-Parke (SP) like. The signature resistivity^1/2 scaling of the effective island growth rate is, indeed, found in this nonlinear stage. The SP stage culminates in the saturation of the mode, which can, thus, be achieved much faster than via Rutherford regime.
- Differential rotation occurs in conducting flows in accretion disks and planetary cores. In such systems, the magnetorotational instability can arise from coupling Lorentz and centrifugal forces to cause large radial angular momentum fluxes. We present the first experimental observation of the magnetorotational instability. Our system consists of liquid sodium between differentially rotating spheres, with an imposed coaxial magnetic field. We characterize the observed patterns, dynamics and torque increases, and establish that this instability can occur from a hydrodynamic turbulent background.