results for au:Chazal_F in:cs

- Topological Data Analysis (tda) is a recent and fast growing eld providing a set of new topological and geometric tools to infer relevant features for possibly complex data. This paper is a brief introduction, through a few selected topics, to basic fundamental and practical aspects of tda for non experts. 1 Introduction and motivation Topological Data Analysis (tda) is a recent eld that emerged from various works in applied (algebraic) topology and computational geometry during the rst decade of the century. Although one can trace back geometric approaches for data analysis quite far in the past, tda really started as a eld with the pioneering works of Edelsbrunner et al. (2002) and Zomorodian and Carlsson (2005) in persistent homology and was popularized in a landmark paper in 2009 Carlsson (2009). tda is mainly motivated by the idea that topology and geometry provide a powerful approach to infer robust qualitative, and sometimes quantitative, information about the structure of data-see, e.g. Chazal (2017). tda aims at providing well-founded mathematical, statistical and algorithmic methods to infer, analyze and exploit the complex topological and geometric structures underlying data that are often represented as point clouds in Euclidean or more general metric spaces. During the last few years, a considerable eort has been made to provide robust and ecient data structures and algorithms for tda that are now implemented and available and easy to use through standard libraries such as the Gudhi library (C++ and Python) Maria et al. (2014) and its R software interface Fasy et al. (2014a). Although it is still rapidly evolving, tda now provides a set of mature and ecient tools that can be used in combination or complementary to other data sciences tools. The tdapipeline. tda has recently known developments in various directions and application elds. There now exist a large variety of methods inspired by topological and geometric approaches. Providing a complete overview of all these existing approaches is beyond the scope of this introductory survey. However, most of them rely on the following basic and standard pipeline that will serve as the backbone of this paper: 1. The input is assumed to be a nite set of points coming with a notion of distance-or similarity between them. This distance can be induced by the metric in the ambient space (e.g. the Euclidean metric when the data are embedded in R d) or come as an intrinsic metric dened by a pairwise distance matrix. The denition of the metric on the data is usually given as an input or guided by the application. It is however important to notice that the choice of the metric may be critical to reveal interesting topological and geometric features of the data.
- Approximations of Laplace-Beltrami operators on manifolds through graph Lapla-cians have become popular tools in data analysis and machine learning. These discretized operators usually depend on bandwidth parameters whose tuning remains a theoretical and practical problem. In this paper, we address this problem for the unnormalized graph Laplacian by establishing an oracle inequality that opens the door to a well-founded data-driven procedure for the bandwidth selection. Our approach relies on recent results by Lacour and Massart [LM15] on the so-called Lepski's method.
- Distances to compact sets are widely used in the field of Topological Data Analysis for inferring geometric and topological features from point clouds. In this context, the distance to a probability measure (DTM) has been introduced by Chazal et al. (2011) as a robust alternative to the distance a compact set. In practice, the DTM can be estimated by its empirical counterpart, that is the distance to the empirical measure (DTEM). In this paper we give a tight control of the deviation of the DTEM. Our analysis relies on a local analysis of empirical processes. In particular, we show that the rates of convergence of the DTEM directly depends on the regularity at zero of a particular quantile fonction which contains some local information about the geometry of the support. This quantile function is the relevant quantity to describe precisely how difficult is a geometric inference problem. Several numerical experiments illustrate the convergence of the DTEM and also confirm that our bounds are tight.
- Let P be a distribution with support S. The salient features of S can be quantified with persistent homology, which summarizes topological features of the sublevel sets of the distance function (the distance of any point x to S). Given a sample from P we can infer the persistent homology using an empirical version of the distance function. However, the empirical distance function is highly non-robust to noise and outliers. Even one outlier is deadly. The distance-to-a-measure (DTM), introduced by Chazal et al. (2011), and the kernel distance, introduced by Phillips et al. (2014), are smooth functions that provide useful topological information but are robust to noise and outliers. Chazal et al. (2014) derived concentration bounds for DTM. Building on these results, we derive limiting distributions and confidence sets, and we propose a method for choosing tuning parameters.
- Dec 05 2014 cs.CG arXiv:1412.1680v3Given a real-valued function $f$ defined over a manifold $M$ embedded in $\mathbb{R}^d$, we are interested in recovering structural information about $f$ from the sole information of its values on a finite sample $P$. Existing methods provide approximation to the persistence diagram of $f$ when geometric noise and functional noise are bounded. However, they fail in the presence of aberrant values, also called outliers, both in theory and practice. We propose a new algorithm that deals with outliers. We handle aberrant functional values with a method inspired from the k-nearest neighbors regression and the local median filtering, while the geometric outliers are handled using the distance to a measure. Combined with topological results on nested filtrations, our algorithm performs robust topological analysis of scalar fields in a wider range of noise models than handled by current methods. We provide theoretical guarantees and experimental results on the quality of our approximation of the sampled scalar field.
- Persistent homology is a multiscale method for analyzing the shape of sets and functions from point cloud data arising from an unknown distribution supported on those sets. When the size of the sample is large, direct computation of the persistent homology is prohibitive due to the combinatorial nature of the existing algorithms. We propose to compute the persistent homology of several subsamples of the data and then combine the resulting estimates. We study the risk of two estimators and we prove that the subsampling approach carries stable topological information while achieving a great reduction in computational complexity.
- Persistent homology is a widely used tool in Topological Data Analysis that encodes multiscale topological information as a multi-set of points in the plane called a persistence diagram. It is difficult to apply statistical theory directly to a random sample of diagrams. Instead, we can summarize the persistent homology with the persistence landscape, introduced by Bubenik, which converts a diagram into a well-behaved real-valued function. We investigate the statistical properties of landscapes, such as weak convergence of the average landscapes and convergence of the bootstrap. In addition, we introduce an alternate functional summary of persistent homology, which we call the silhouette, and derive an analogous statistical theory.
- Persistent homology probes topological properties from point clouds and functions. By looking at multiple scales simultaneously, one can record the births and deaths of topological features as the scale varies. In this paper we use a statistical technique, the empirical bootstrap, to separate topological signal from topological noise. In particular, we derive confidence sets for persistence diagrams and confidence bands for persistence landscapes.
- Jun 04 2013 cs.CG arXiv:1306.0039v2We extend the notion of the distance to a measure from Euclidean space to probability measures on general metric spaces as a way to do topological data analysis in a way that is robust to noise and outliers. We then give an efficient way to approximate the sub-level sets of this function by a union of metric balls and extend previous results on sparse Rips filtrations to this setting. This robust and efficient approach to topological data analysis is illustrated with several examples from an implementation.
- Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be naturally considered in general statistical frameworks and persistence diagrams can be used as statistics with interesting convergence properties. Some numerical experiments are performed in various contexts to illustrate our results.
- In many real-world applications data come as discrete metric spaces sampled around 1-dimensional filamentary structures that can be seen as metric graphs. In this paper we address the metric reconstruction problem of such filamentary structures from data sampled around them. We prove that they can be approximated, with respect to the Gromov-Hausdorff distance by well-chosen Reeb graphs (and some of their variants) and we provide an efficient and easy to implement algorithm to compute such approximations in almost linear time. We illustrate the performances of our algorithm on a few synthetic and real data sets.
- In this paper we study the properties of the homology of different geometric filtered complexes (such as Vietoris-Rips, Cech and witness complexes) built on top of precompact spaces. Using recent developments in the theory of topological persistence we provide simple and natural proofs of the stability of the persistent homology of such complexes with respect to the Gromov--Hausdorff distance. We also exhibit a few noteworthy properties of the homology of the Rips and Cech complexes built on top of compact spaces.
- We give a self-contained treatment of the theory of persistence modules indexed over the real line. We give new proofs of the standard results. Persistence diagrams are constructed using measure theory. Linear algebra lemmas are simplified using a new notation for calculations on quiver representations. We show that the stringent finiteness conditions required by traditional methods are not necessary to prove the existence and stability of the persistence diagram. We introduce weaker hypotheses for taming persistence modules, which are met in practice and are strong enough for the theory still to work. The constructions and proofs enabled by our framework are, we claim, cleaner and simpler.
- We address the problem of curvature estimation from sampled compact sets. The main contribution is a stability result: we show that the gaussian, mean or anisotropic curvature measures of the offset of a compact set K with positive $\mu$-reach can be estimated by the same curvature measures of the offset of a compact set K' close to K in the Hausdorff sense. We show how these curvature measures can be computed for finite unions of balls. The curvature measures of the offset of a compact set with positive $\mu$-reach can thus be approximated by the curvature measures of the offset of a point-cloud sample. These results can also be interpreted as a framework for an effective and robust notion of curvature.
- Manifold reconstruction has been extensively studied for the last decade or so, especially in two and three dimensions. Recently, significant improvements were made in higher dimensions, leading to new methods to reconstruct large classes of compact subsets of Euclidean space $\R^d$. However, the complexities of these methods scale up exponentially with d, which makes them impractical in medium or high dimensions, even for handling low-dimensional submanifolds. In this paper, we introduce a novel approach that stands in-between classical reconstruction and topological estimation, and whose complexity scales up with the intrinsic dimension of the data. Specifically, when the data points are sufficiently densely sampled from a smooth $m$-submanifold of $\R^d$, our method retrieves the homology of the submanifold in time at most $c(m)n^5$, where $n$ is the size of the input and $c(m)$ is a constant depending solely on $m$. It can also provably well handle a wide range of compact subsets of $\R^d$, though with worse complexities. Along the way to proving the correctness of our algorithm, we obtain new results on Čech, Rips, and witness complex filtrations in Euclidean spaces.
- We introduce the boundary measure at scale r of a compact subset of the n-dimensional Euclidean space. We show how it can be computed for point clouds and suggest these measures can be used for feature detection. The main contribution of this work is the proof a quantitative stability theorem for boundary measures using tools of convex analysis and geometric measure theory. As a corollary we obtain a stability result for Federer's curvature measures of a compact, allowing to compute them from point-cloud approximations of the compact.