results for au:Chatziioannou_K in:gr-qc

- May 09 2018 gr-qc arXiv:1805.03046v1Gravitational waves emitted by coalescing compact objects carry information about the spin of the individual bodies. However, with present detectors only the mass-weighted combination of the components of the spin along the orbital angular momentum can be measured accurately. This quantity, the effective spin $\chi_{\mathrm{eff}}$, is conserved up to at least the second post-Newtonian order. The measured distribution of $\chi_{\mathrm{eff}}$ values from a population of detected binaries, and in particular whether this distribution is symmetric about zero, encodes valuable information about the underlying compact-binary formation channels. In this paper we focus on two important complications of using the effective spin to study astrophysical population properties: (i) an astrophysical distribution for $\chi_{\mathrm{eff}}$ values which is symmetric does not necessarily lead to a symmetric distribution for the detected effective spin values, leading to a \emphselection bias; and (ii) the posterior distribution of $\chi_{\mathrm{eff}}$ for individual events is \emphasymmetric and it cannot usually be treated as a Gaussian. We find that the posterior distributions for $\chi_{\mathrm{eff}}$ systematically show fatter tails toward larger positive values, unless the total mass is large or the mass ratio $m_2/m_1$ is smaller than $\sim 1/2$. Finally we show that uncertainties in the measurement of $\chi_{\mathrm{eff}}$ are systematically larger when the true value is negative than when it is positive. All these factors can bias astrophysical inference about the population when we have more than $\sim 100$ events and should be taken into account when using gravitational-wave measurements to characterize astrophysical populations.
- Apr 16 2018 gr-qc arXiv:1804.04877v1The ability to directly detect gravitational waves has enabled us to empirically probe the nature of ultra-compact relativistic objects. Several alternatives to the black holes of classical general relativity have been proposed which do not have a horizon, in which case a newly formed object (e.g. as a result of binary merger) may emit echoes: bursts of gravitational radiation with varying amplitude and duration, but arriving at regular time intervals. Unlike in previous template-based approaches, we present a morphology-independent search method to find echoes in the data from gravitational wave detectors, based on a decomposition of the signal in terms of generalized wavelets consisting of multiple sine-Gaussians. The ability of the method to discriminate between echoes and instrumental noise is assessed by inserting into the noise two different signals: a train of sine-Gaussians, and an echoing signal from an extreme mass-ratio inspiral of a particle into a Schwarzschild vacuum spacetime, with reflective boundary conditions close to the horizon. We find that both types of signals are detectable for plausible signal-to-noise ratios in existing detectors and their near-future upgrades. Finally, we show how the algorithm can provide a characterization of the echoes in terms of the time between successive bursts, and damping and widening from one echo to the next.
- Apr 12 2018 gr-qc astro-ph.HE arXiv:1804.03704v1Characterizing the properties of black holes is one of the most important science objectives for gravitational-wave observations. Astrophysical evidence suggests that black holes that are nearly extremal (i.e. spins near the theoretical upper limit) might exist and thus might be among the merging black holes observed with gravitational waves. In this paper, we explore how well current gravitational wave parameter estimation methods can measure the spins of rapidly spinning black holes in binaries. We simulate gravitational-wave signals using numerical-relativity waveforms for nearly-extremal, merging black holes. For simplicity, we confine our attention to binaries with spins parallel or antiparallel with the orbital angular momentum. We find that recovering the holes' nearly extremal spins is challenging. When the spins are nearly extremal and parallel to each other, the resulting parameter estimates do recover spins that are large, though the recovered spin magnitudes are still significantly smaller than the true spin magnitudes. When the spins are nearly extremal and antiparallel to each other, the resulting parameter estimates recover the small effective spin but incorrectly estimate the individual spins as nearly zero. We study the effect of spin priors and argue that a commonly used prior (uniform in spin magnitude and direction) hinders unbiased recovery of large black-hole spins.
- Apr 11 2018 gr-qc astro-ph.HE arXiv:1804.03221v1Gravitational wave measurements of binary neutron star coalescences offer information about the properties of the extreme matter that comprises the stars. Despite our expectation that all neutron stars in the Universe obey the same equation of state, i.e. the properties of the matter that forms them are universal, current tidal inference analyses treat the two bodies as independent. We present a method to measure the effect of tidal interactions in the gravitational wave signal -- and hence constrain the equation of state -- that assumes that the two binary components obey the same equation of state. Our method makes use of a relation between the tidal deformabilities of the two stars given the ratio of their masses, a relation that has been shown to only have a weak dependance on the equation of state. We use this relation to link the tidal deformabilities of the two stars in a realistic parameter inference study while simultaneously marginalizing over the error in the relation. This approach incorporates more physical information into our analysis, thus leading to a better measurement of tidal effects in gravitational wave signals. Through simulated signals we estimate that uncertainties in the measured tidal parameters are reduced by a factor of at least 2 -- and in some cases up to 10 -- depending on the equation of state and mass ratio of the system.
- Dec 20 2017 astro-ph.HE gr-qc arXiv:1712.06635v1We present a critical reanalysis of the black-hole binary coalescences detected during LIGO's first observing run under different Bayesian prior assumptions. We summarize the main findings of Vitale et al. (2017) and show additional marginalized posterior distributions for some of the binaries' intrinsic parameters.
- Nov 16 2017 astro-ph.HE gr-qc arXiv:1711.05578v1On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through gravitational waves with electromagnetic observations. The source's luminosity distance is $340^{+140}_{-140}$ Mpc, corresponding to redshift $0.07^{+0.03}_{-0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity.
- Nov 02 2017 gr-qc astro-ph.HE arXiv:1711.00040v2We present a robust method to characterize the gravitational wave emission from the remnant of a neutron star coalescence. Our approach makes only minimal assumptions about the morphology of the signal and provides a full posterior probability distribution of the underlying waveform. We apply our method on simulated data from a network of advanced ground-based detectors and demonstrate the gravitational wave signal reconstruction. We study the reconstruction quality for different binary configurations and equations of state for the colliding neutron stars. We show how our method can be used to constrain the yet-uncertain equation of state of neutron star matter. The constraints on the equation of state we derive are complimentary to measurements of the tidal deformation of the colliding neutron stars during the late inspiral phase. In the case of a non-detection of a post-merger signal following a binary neutron star inspiral we show that we can place upper limits on the energy emitted.
- Sep 28 2017 gr-qc astro-ph.HE arXiv:1709.09660v3On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm-rate of $\lesssim$ 1 in 27000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are $30.5_{-3.0}^{+5.7}$ Msun and $25.3_{-4.2}^{+2.8}$ Msun (at the 90% credible level). The luminosity distance of the source is $540_{-210}^{+130}~\mathrm{Mpc}$, corresponding to a redshift of $z=0.11_{-0.04}^{+0.03}$. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg$^2$ using only the two LIGO detectors to 60 deg$^2$ using all three detectors. For the first time, we can test the nature of gravitational wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.
- Jul 18 2017 gr-qc astro-ph.HE arXiv:1707.04637v2In a regime where data are only mildly informative, prior choices can play a significant role in Bayesian statistical inference, potentially affecting the inferred physics. We show this is indeed the case for some of the parameters inferred from current gravitational-wave measurements of binary black hole coalescences. We reanalyze the first detections performed by the twin LIGO interferometers using alternative (and astrophysically motivated) prior assumptions. We find different prior distributions can introduce deviations in the resulting posteriors that impact the physical interpretation of these systems. For instance, (i) limits on the $90\%$ credible interval on the effective black hole spin $\chi_{\rm eff}$ are subject to variations of $\sim 10\%$ if a prior with black hole spins mostly aligned to the binary's angular momentum is considered instead of the standard choice of isotropic spin directions, and (ii) under priors motivated by the initial stellar mass function, we infer tighter constraints on the black hole masses, and in particular, we find no support for any of the inferred masses within the putative mass gap $M \lesssim 5 M_\odot$.
- Jun 13 2017 astro-ph.HE gr-qc arXiv:1706.03119v3We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modelled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range from 25 Hz to 2000 Hz, spanning the current observationally-constrained range of the binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at 175 Hz, with comparable limits set across the most sensitive frequency range from 100 Hz to 200 Hz. At this frequency, the 95 pct upper limit on signal amplitude h0 is 2.3e-25 marginalized over the unknown inclination angle of the neutron star's spin, and 8.03e-26 assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3-4 stronger than those set by other analyses of the same data, and a factor of about 7 stronger than the best upper limits set using initial LIGO data. In the vicinity of 100 Hz, the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on inclination angle, if the most likely inclination angle of 44 degrees is assumed, they are within a factor of 1.7.
- Jun 07 2017 gr-qc astro-ph.HE arXiv:1706.01812v1We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10:11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70,000 years. The inferred component black hole masses are $31.2^{+8.4}_{-6.0}\,M_\odot$ and $19.4^{+5.3}_{-5.9}\,M_\odot$ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, $\chi_\mathrm{eff} = -0.12^{+0.21}_{-0.30}.$ This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is $880^{+450}_{-390}~\mathrm{Mpc}$ corresponding to a redshift of $z = 0.18^{+0.08}_{-0.07}$. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to $m_g \le 7.7 \times 10^{-23}~\mathrm{eV}/c^2$. In all cases, we find that GW170104 is consistent with general relativity.
- Mar 14 2017 gr-qc astro-ph.HE arXiv:1703.03967v3The coalescence of compact objects is one of the most promising sources of gravitational waves for ground-based interferometric detectors, such as advanced LIGO and Virgo. Generically, com- pact objects in binaries are expected to be spinning with spin angular momenta misaligned with the orbital angular momentum, causing the orbital plane to precess. This precession adds rich structure to the gravitational waves, introducing such complexity that an analytic closed-form description has been unavailable until now. We here construct the first closed-form frequency- domain gravitational waveforms that are valid for generic spin-precessing quasicircular compact binary inspirals. We first construct time-domain gravitational waves by solving the post-Newtonian precession equations of motion with radiation reaction through multiple scale analysis. We then Fourier transform these time-domain waveforms with the method of shifted uniform asymptotics to obtain closed-form expressions for frequency-domain waveforms. We study the accuracy of these analytic, frequency-domain waveforms relative to waveforms obtained by numerically evolving the post-Newtonian equations of motion and find that they are suitable for unbiased parameter estimation for 99.2%(94.6%) of the binary configurations we studied at a signal-to-noise ratio of 10(25). These new frequency-domain waveforms could be used for detection and parameter estimation studies due to their accuracy and low computational cost.
- Aug 10 2016 gr-qc arXiv:1608.02899v3We calculate the energy and angular momentum fluxes across the event horizon of a tidally deformed, rapidly rotating black hole to next-to-leading order in the curvature of the external spacetime. These are expressed in terms of tidal quadrupole moments and their time derivatives, which provide a characterization of a generic tidal environment. As an application of our results, we provide an expression for the energy and angular-momentum fluxes across the horizon when the black hole is a member of a binary system on a slowly-moving, quasi-circular orbit. Our expressions are accurate to 1.5 post-Newtonian order beyond the leading-order fluxes, but they are valid for arbitrary mass ratios. We compare our results to those previously obtained in the case of an extreme mass ratio binary, and find that they do not agree at the 1.5 post-Newtonian order. We investigate a number of possible sources for this discrepancy, but are ultimately unable to resolve it.
- Jun 13 2016 gr-qc astro-ph.HE arXiv:1606.03117v2Binary systems of two compact objects circularize and spiral toward each other via the emission of gravitational waves. The coupling of the spins of each object with the orbital angular momentum causes the orbital plane to precess, which leads to modulation of the gravitational wave signal. Until now, generating frequency-domain waveforms for fully precessing systems for use in gravitational wave data analysis meant numerically integrating the equations of motion, then Fourier transforming the result, which is very computationally intensive for systems that complete hundreds or thousands of cycles in the sensitive band of a detector. Previously, analytic solutions were only available for certain special cases or for simplified models. Here we describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals.
- Aug 11 2015 gr-qc astro-ph.HE arXiv:1508.02062v2Gravitational waves from neutron star binary inspirals contain information about the equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure in a neutron star as function of its density have been proposed. These models differ not only in the approximations and techniques they use to solve the many-body Schrödinger equation, but also in the neutron star composition they assume. We study whether gravitational wave observations of neutron star binaries in quasicircular inspirals will allow us to distinguish between equations of state of differing internal composition, thereby providing important information about the properties of extremely high density matter. We carry out a Bayesian model selection analysis, and find that second generation gravitational wave detectors can heavily constrain equations of state that contain only quark matter, but hybrid stars containing both normal and quark matter are harder to distinguish from normal matter stars. A gravitational wave detection with a signal-to-noise ratio of 30 and masses around $1.4M_{\odot}$ could either detect or rule out strange quark stars with a 20 to 1 confidence. The presence of kaon condensates or hyperons in neutron star inner cores cannot be easily confirmed. For example, for the equations of state studied in this paper, even a gravitational wave signal with a signal-to-noise ratio as high as 60 would not allow us to claim a detection of kaon condensates or hyperons with confidence greater than 5 to 1. On the other hand, if kaon condensates and hyperons do not form in neutron stars, a gravitational wave signal with similar signal-to-noise ratio would be able to constrain their existence with an 11 to 1 confidence for high-mass systems.
- Jun 30 2014 gr-qc arXiv:1406.7135v2The gravitational properties of astrophysical objects depend sensitively on their internal structure. In Newtonian theory, the gravitational potential of a rotating star can be fully described by an infinite number of multipole moments of its mass distribution. Recently, this infinite number of moments for uniformly-rotating stars were shown semi-analytically to be expressible in terms of just the first three: the mass, the spin, and the quadrupole moment of the star. The relations between the various lower multipole moments were additionally shown to depend weakly on the equation of state, when considering neutron stars and assuming single polytropic equations of state. Here we extend this result in two ways. First, we show that the universality also holds for realistic equations of state, thus relaxing the need to use single polytropes. Second, we derive purely analytical universal relations by perturbing the equations of structure about an $n=0$ polytrope that reproduce semi-analytic results to $\mathcal{O}(1\%)$. We also find that the linear-order perturbation vanishes in some cases, which provides further evidence and a deeper understanding of the universality.
- Apr 14 2014 gr-qc arXiv:1404.3180v2We study the performance of various analytical frequency-domain templates for detection and parameter estimation of gravitational waves from spin-precessing, quasi-circular, compact binary inspirals. We begin by assessing the extent to which non-spinning, spin-aligned, and the new (analytical, frequency-domain, small-spin) double-precessing frequency-domain templates can be used to detect signals from such systems. For effective, dimensionless spin values above $0.2$, the use of non-spinning or spin-aligned templates for detection purposes will result in a loss of up to $30%$ of all events, while in the case of the double-precessing model, this never exceeds $6%$. Moreover, even for signals from systems with small spins, non-spinning and spin-aligned templates introduce large biases in the extracted masses and spins. The use of a model that encodes spin-induced precession effects, such as the double-precessing model, improves the mass and spin extraction by up to an order of magnitude. The additional information encoded in the spin-orbit interaction is invaluable if one wishes to extract the maximum amount of information from gravitational wave signals.
- Feb 17 2014 gr-qc astro-ph.HE arXiv:1402.3581v2Mergers of compact stellar remnant are prime targets for the LIGO/Virgo gravitational wave detectors. One hopes that the gravitational wave signals from these merger events can be used to study the mass and spin distribution of stellar remnants, and provide information about black hole horizons and the material properties of neutron stars. However, it has been suggested that degeneracies in the way that the star's mass and spin are imprinted in the waveforms may make it impossible to distinguish between black holes and neutron stars. Here we show that the precession of the orbital plane due to spin-orbit coupling breaks the mass-spin degeneracy, and allows us to distinguish between standard neutron stars and alternative possibilities, such as black holes or exotic neutron stars with large masses and spins.
- Jul 17 2013 gr-qc arXiv:1307.4418v2We obtain analytical gravitational waveforms in the frequency-domain for precessing, quasi-circular compact binaries with small spins, applicable, for example, to binary neutron star inspirals. We begin by calculating an analytic solution to the precession equations, obtained by expanding in the dimensionless spin parameters and using multiple-scale analysis to separate timescales. We proceed by analytically computing the Fourier transform of time-domain waveform through the stationary phase approximation. We show that the latter is valid for systems with small spins. Finally, we show that these waveforms have a high overlap with numerical waveforms obtained through direct integration of the precession equations and discrete Fourier transformations. The resulting, analytic waveform family is ideal for detection and parameter estimation of gravitational waves emitted by inspiraling binary neutron stars with ground-based detectors.
- Nov 09 2012 gr-qc arXiv:1211.1686v2We calculate the linear vacuum perturbations of a Kerr black hole surrounded by a slowly-varying external spacetime to third order in the ratio of the black-hole mass to the radius of curvature of the external spacetime. This expansion applies to two relevant physical scenarios: (i) a small Kerr black hole immersed in the gravitational field of a much larger external black hole, and (ii) a Kerr black hole moving slowly around another external black hole of comparable mass. This small-hole/slow-motion approximation allows us to parametrize the perturbation through slowly-varying, time-dependent electric and magnetic tidal tensors, which then enables us to separate the Teukolsky equation and compute the Newman-Penrose scalar analytically to third order in our expansion parameter. We obtain generic expressions for the mass and angular momentum flux through the perturbed black hole horizon, as well as the rate of change of the horizon surface area, in terms of certain invariants constructed from the electric and magnetic tidal tensors. We conclude by applying these results to the two scenarios described above.
- We develop a model-independent test of General Relativity that allows for the constraint of the gravitational wave (GW) polarization content with GW detections of binary compact object inspirals. We first consider three modified gravity theories (Brans-Dicke theory, Rosen's theory and Lightman-Lee theory) and calculate the response function of ground-based detectors to gravitational waves in the inspiral phase. This allows us to see how additional polarizations predicted in these theories modify the General Relativistic prediction of the response function. We then consider general power-law modifications to the Hamiltonian and radiation-reaction force and study how these modify the time-domain and Fourier response function when all polarizations are present. From these general arguments and specific modified gravity examples, we infer an improved parameterized post-Einsteinian template family with complete polarization content. This family enhances General Relativity templates through the inclusion of new theory parameters, reducing to the former when these parameters acquire certain values, and recovering modified gravity predictions for other values, including all polarizations. We conclude by discussing detection strategies to constrain these new, polarization theory parameters by constructing certain null channels through the combination of output from multiple detectors.