results for au:Canizares_P in:gr-qc

- Mar 01 2018 gr-qc astro-ph.CO arXiv:1802.10194v2The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically-polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy-densities of tensor, vector, and scalar modes at 95% credibility to $\Omega^T_0 < 5.6 \times 10^{-8}$, $\Omega^V_0 < 6.4\times 10^{-8}$, and $\Omega^S_0 < 1.1\times 10^{-7}$ at a reference frequency $f_0 = 25$ Hz.
- Feb 15 2018 gr-qc arXiv:1802.05241v1We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0e-8, +1e-9] Hz/s. Potential signals could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h_0 is 4e-25 near 170 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 1.3e-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ~1.5e-25.
- Dec 05 2017 gr-qc astro-ph.CO arXiv:1712.01168v2Cosmic strings are topological defects which can be formed in GUT-scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension $G\mu$ and the intercommutation probability, using not only the burst analysis performed on the O1 data set, but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and Big-Bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.
- Nov 16 2017 astro-ph.HE gr-qc arXiv:1711.05578v1On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through gravitational waves with electromagnetic observations. The source's luminosity distance is $340^{+140}_{-140}$ Mpc, corresponding to redshift $0.07^{+0.03}_{-0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity.
- Oct 26 2017 astro-ph.HE gr-qc arXiv:1710.09320v1The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the equation of state of nuclear matter. This could be either a black hole or a neutron star (NS), with the latter being either long-lived or too massive for stability implying delayed collapse to a black hole. Here, we present a search for gravitational waves from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short ($\lesssim1$ s) and intermediate-duration ($\lesssim 500$ s) signals, which includes gravitational-wave emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root-sum-square of the gravitational-wave strain emitted from 1--4 kHz is $h_{\rm rss}^{50\%}=2.1\times 10^{-22}$ Hz$^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is $h_{\rm rss}^{50\%}=8.4\times 10^{-22}$ Hz$^{-1/2}$ for a millisecond magnetar model, and $h_{\rm rss}^{50\%}=5.9\times 10^{-22}$ Hz$^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.
- Oct 17 2017 gr-qc arXiv:1710.05837v1The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.8_{-1.3}^{+2.7} \times 10^{-9}$ with $90\%$ confidence, compared with $\Omega_{\rm GW} (f=25 \text{Hz}) = 1.1_{-0.7}^{+1.2} \times 10^{-9}$ from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
- Oct 09 2017 gr-qc astro-ph.HE arXiv:1710.02327v2Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, \it narrow-band analyses methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of eleven pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched: in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.
- Sep 28 2017 gr-qc arXiv:1709.09203v1We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously-published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity.
- Sep 28 2017 gr-qc astro-ph.HE arXiv:1709.09660v3On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm-rate of $\lesssim$ 1 in 27000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are $30.5_{-3.0}^{+5.7}$ Msun and $25.3_{-4.2}^{+2.8}$ Msun (at the 90% credible level). The luminosity distance of the source is $540_{-210}^{+130}~\mathrm{Mpc}$, corresponding to a redshift of $z=0.11_{-0.04}^{+0.03}$. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg$^2$ using only the two LIGO detectors to 60 deg$^2$ using all three detectors. For the first time, we can test the nature of gravitational wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.
- Jul 11 2017 gr-qc astro-ph.IM arXiv:1707.02667v2We report on an all-sky search for periodic gravitational waves in the frequency band 20-475 Hz and with a frequency time derivative in the range of [-1.0, +0.1]e-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are 4e-25 near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest upper limits obtained are 1.5e-25. These upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest upper limits obtained for the strain amplitude are 2.5e-25.
- Jul 11 2017 gr-qc arXiv:1707.02669v2We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1/$\sqrt{{\textrm{Hz}}}$]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of $1.8 \times 10^{-25}$. At the low end of our frequency range, 20 Hz, we achieve upper limits of $3.9 \times 10^{-24}$. At 55 Hz we can exclude sources with ellipticities greater than $10^{-5}$ within 100 pc of Earth with fiducial value of the principal moment of inertia of $10^{38} \textrm{kg m}^2$.
- Jun 13 2017 astro-ph.HE gr-qc arXiv:1706.03119v3We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modelled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range from 25 Hz to 2000 Hz, spanning the current observationally-constrained range of the binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at 175 Hz, with comparable limits set across the most sensitive frequency range from 100 Hz to 200 Hz. At this frequency, the 95 pct upper limit on signal amplitude h0 is 2.3e-25 marginalized over the unknown inclination angle of the neutron star's spin, and 8.03e-26 assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3-4 stronger than those set by other analyses of the same data, and a factor of about 7 stronger than the best upper limits set using initial LIGO data. In the vicinity of 100 Hz, the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on inclination angle, if the most likely inclination angle of 44 degrees is assumed, they are within a factor of 1.7.
- Jun 07 2017 gr-qc astro-ph.HE arXiv:1706.01812v1We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10:11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70,000 years. The inferred component black hole masses are $31.2^{+8.4}_{-6.0}\,M_\odot$ and $19.4^{+5.3}_{-5.9}\,M_\odot$ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, $\chi_\mathrm{eff} = -0.12^{+0.21}_{-0.30}.$ This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is $880^{+450}_{-390}~\mathrm{Mpc}$ corresponding to a redshift of $z = 0.18^{+0.08}_{-0.07}$. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to $m_g \le 7.7 \times 10^{-23}~\mathrm{eV}/c^2$. In all cases, we find that GW170104 is consistent with general relativity.
- Apr 18 2017 gr-qc arXiv:1704.04628v4During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals and GW151226, produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected, therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass $100\,M_\odot$, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than $0.93~\mathrm{Gpc^{-3}\,yr}^{-1}$ in comoving units at the $90\%$ confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.
- Apr 13 2017 gr-qc arXiv:1704.03719v3Results are presented from a semi-coherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run (O1). The search combines a frequency domain matched filter (Bessel-weighted $\mathcal{F}$-statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No evidence of gravitational waves is found in the frequency range 60-650 Hz. Frequentist 95% confidence strain upper limits, $h_0^{95\%} = 4.0\times10^{-25}$, $8.3\times10^{-25}$, and $3.0\times10^{-25}$ for electromagnetically restricted source orientation, unknown polarization, and circular polarization, respectively, are reported at 106 Hz. They are $\leq 10$ times higher than the theoretical torque-balance limit at 106 Hz.
- Feb 21 2017 gr-qc astro-ph.HE arXiv:1702.05481v1Extreme mass ratio inspirals (EMRIs) occur when a compact object orbits a much larger one, like a solar-mass black hole around a supermassive black hole. The orbit has 3 frequencies which evolve through the inspiral. If the orbital radial frequency and polar frequency become commensurate, the system passes through a transient resonance. Evolving through resonance causes a jump in the evolution of the orbital parameters. We study these jumps and their impact on EMRI gravitational-wave detection. Jumps are smaller for lower eccentricity orbits; since most EMRIs have small eccentricities when passing through resonances, we expect that the impact on detection will be small. Neglecting the effects of transient resonances leads to a loss of ~4% of detectable signals for an astrophysically motivated population of EMRIs.
- Sep 01 2016 gr-qc astro-ph.HE arXiv:1608.08951v2The inspiral of stellar-mass compact objects, like neutron stars or stellar-mass black holes, into supermassive black holes provides a wealth of information about the strong gravitational-field regime via the emission of gravitational waves. In order to detect and analyse these signals, accurate waveform templates which include the effects of the compact object's gravitational self-force are required. For computational efficiency, adiabatic templates are often used. These accurately reproduce orbit-averaged trajectories arising from the first-order self-force, but neglect other effects, such as transient resonances, where the radial and poloidal fundamental frequencies become commensurate. During such resonances the flux of gravitational waves can be diminished or enhanced, leading to a shift in the compact object's trajectory and the phase of the waveform. We present an evolution scheme for studying the effects of transient resonances and apply this to an astrophysically motivated population. We find that a large proportion of systems encounter a low-order resonance in the later stages of inspiral; however, the resulting effect on signal-to-noise recovery is small as a consequence of the low eccentricity of the inspirals. Neglecting the effects of transient resonances leads to a loss of 4% of detectable signals.
- The gravitational waves emitted by binary systems with extreme-mass ratios carry unique astrophysical information that can only be detected by space-based detectors like eLISA. To that end, a very accurate modelling of the system is required. The gravitational self-force program, which has been fully developed in the Lorenz gauge, is the best approach we have so far. However, the computations required would be done more efficiently if we could work in other gauges, like the Regge-Wheeler (RW) one in the case of Schwarzschild black holes. In this letter we present a new scheme, based on the Particle-without-Particle formulation of the field equations, where the gravitational self-force can be obtained from just solving individual wave-type equations like the master equations of the RW gauge. This approach can help to tackle the yet unsolved Kerr case.
- Jun 17 2014 gr-qc astro-ph.HE arXiv:1406.3750v2Gravitational waves from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1+3 approach to relativity. Linearised equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshtein conversion of gravitational waves in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetised pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave-wave resonances previously described in the literature are absent when the electric-magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the gravitational wave strength increases towards the gravitational-electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources.
- Apr 28 2014 gr-qc arXiv:1404.6284v2Inferring the astrophysical parameters of coalescing compact binaries is a key science goal of the upcoming advanced LIGO-Virgo gravitational-wave detector network and, more generally, gravitational-wave astronomy. However, current parameter estimation approaches for such scenarios can lead to computationally intractable problems in practice. Therefore there is a pressing need for new, fast and accurate Bayesian inference techniques. In this letter we demonstrate that a reduced order modeling approach enables rapid parameter estimation studies. By implementing a reduced order quadrature scheme within the LIGO Algorithm Library, we show that Bayesian inference on the 9-dimensional parameter space of non-spinning binary neutron star inspirals can be sped up by a factor of 30 for the early advanced detectors' configurations. This speed-up will increase to about $150$ as the detectors improve their low-frequency limit to 10Hz, reducing to hours analyses which would otherwise take months to complete. Although these results focus on gravitational detectors, the techniques are broadly applicable to any experiment where fast Bayesian analysis is desirable.
- One of the main bottlenecks in gravitational wave (GW) astronomy is the high cost of performing parameter estimation and GW searches on the fly. We propose a novel technique based on Reduced Order Quadratures (ROQs), an application and data-specific quadrature rule, to perform fast and accurate likelihood evaluations. These are the dominant cost in Markov chain Monte Carlo (MCMC) algorithms, which are widely employed in parameter estimation studies, and so ROQs offer a new way to accelerate GW parameter estimation. We illustrate our approach using a four dimensional GW burst model embedded in noise. We build an ROQ for this model, and perform four dimensional MCMC searches with both the standard and ROQs quadrature rules, showing that, for this model, the ROQ approach is around 25 times faster than the standard approach with essentially no loss of accuracy. The speed-up from using ROQs is expected to increase for more complex GW signal models and therefore has significant potential to accelerate parameter estimation of GW sources such as compact binary coalescences.
- General Relativity (GR) describes gravitation well at the energy scales which we have so far been able to achieve or detect. However, we do not know whether GR is behind the physics governing stronger gravitational field regimes, such as near neutron stars or massive black-holes (MBHs). Gravitational-wave (GW) astronomy is a promising tool to test and validate GR and/or potential alternative theories of gravity. The information that a GW waveform carries not only will allow us to map the strong gravitational field of its source, but also determine the theory of gravity ruling its dynamics. In this work, we explore the extent to which we could distinguish between GR and other theories of gravity through the detection of low-frequency GWs from extreme-mass-ratio inspirals (EMRIs) and, in particular, we focus on dynamical Chern-Simons modified gravity (DCSMG). To that end, we develop a framework that enables us, for the first time, to perform a parameter estimation analysis for EMRIs in DCSMG. Our model is described by a 15-dimensional parameter space, that includes the Chern-Simons (CS) parameter which characterises the deviation between the two theories, and our analysis is based on Fisher information matrix techniques together with a (maximum-mismatch) criterion to assess the validity of our results. In our analysis, we study a 5-dimensional parameter space, finding that a GW detector like the Laser Interferometer Space Antenna (LISA) or eLISA (evolved LISA) should be able to discriminate between GR and DCSMG with fractional errors below 5%, and hence place bounds four orders of magnitude better than current Solar System bounds.
- Extreme-Mass-Ratio Inspirals (EMRIs) are one of the most promising sources of gravitational waves (GWs) for space-based detectors like the Laser Interferometer Space Antenna (LISA). EMRIs consist of a compact stellar object orbiting around a massive black hole (MBH). Since EMRI signals are expected to be long lasting (containing of the order of hundred thousand cycles), they will encode the structure of the MBH gravitational potential in a precise way such that features depending on the theory of gravity governing the system may be distinguished. That is, EMRI signals may be used to test gravity and the geometry of black holes. However, the development of a practical methodology for computing the generation and propagation of GWs from EMRIs in theories of gravity different than General Relativity (GR) has only recently begun. In this paper, we present a parameter estimation study of EMRIs in a particular modification of GR, which is described by a four-dimensional Chern-Simons (CS) gravitational term. We focus on determining to what extent a space-based GW observatory like LISA could distinguish between GR and CS gravity through the detection of GWs from EMRIs.
- [abridged] The detection of gravitational waves from extreme-mass-ratio (EMRI) binaries, comprising a stellar-mass compact object orbiting around a massive black hole, is one of the main targets for low-frequency gravitational-wave detectors in space, like the Laser Interferometer Space Antenna (LISA or eLISA/NGO). The long-duration gravitational-waveforms emitted by such systems encode the structure of the strong field region of the massive black hole, in which the inspiral occurs. The detection and analysis of EMRIs will therefore allow us to study the geometry of massive black holes and determine whether their nature is as predicted by General Relativity and even to test whether General Relativity is the correct theory to describe the dynamics of these systems. To achieve this, EMRI modeling in alternative theories of gravity is required to describe the generation of gravitational waves. In this paper, we explore to what extent EMRI observations with LISA or eLISA/NGO might be able to distinguish between General Relativity and a particular modification of it, known as Dynamical Chern-Simons Modified Gravity. Our analysis is based on a parameter estimation study that uses approximate gravitational waveforms obtained via a radiative-adiabatic method and is restricted to a five-dimensional subspace of the EMRI configuration space. This includes a Chern-Simons parameter that controls the strength of gravitational deviations from General Relativity. We find that, if Dynamical Chern-Simons Modified Gravity is the correct theory, an observatory like LISA or even eLISA/NGO should be able to measure the Chern-Simons parameter with fractional errors below 5%. If General Relativity is the true theory, these observatories should put bounds on this parameter at the level xi^(1/4) < 10^4 km, which is four orders of magnitude better than current Solar System bounds.
- Mar 12 2011 gr-qc astro-ph.IM arXiv:1103.2149v1When a stellar-mass compact object is captured by a supermassive black hole located in a galactic centre, the system losses energy and angular momentum by the emission of gravitational waves. Subsequently, the stellar compact object evolves inspiraling until plunging onto the massive black hole. These EMRI systems are expected to be one of the main sources of gravitational waves for the future space-based Laser Interferometer Space Antenna (LISA). However, the detection of EMRI signals will require of very accurate theoretical templates taking into account the gravitational self-force, which is the responsible of the stellar-compact object inspiral. Due to its potential applicability on EMRIs, the obtention of an efficient method to compute the scalar self-force acting on a point-like particle orbiting around a massive black hole is being object of increasing interest. We present here a review of our time-domain numerical technique to compute the self-force acting on a point-like particle and we show its suitability to deal with both circular and eccentric orbits.
- The computation of the self-force constitutes one of the main challenges for the construction of precise theoretical waveform templates in order to detect and analyze extreme-mass-ratio inspirals with the future space-based gravitational-wave observatory LISA. Since the number of templates required is quite high, it is important to develop fast algorithms both for the computation of the self-force and the production of waveforms. In this article we show how to tune a recent time-domain technique for the computation of the self-force, what we call the Particle without Particle scheme, in order to make it very precise and at the same time very efficient. We also extend this technique in order to allow for highly eccentric orbits.
- The calculation of the self force in the modeling of the gravitational-wave emission from extreme-mass-ratio binaries is a challenging task. Here we address the question of the possible emergence of a persistent spurious solution in time-domain schemes, referred to as a \em Jost junk solution in the literature, that may contaminate self force calculations. Previous studies suggested that Jost solutions are due to the use of zero initial data, which is inconsistent with the singular sources associated with the small object, described as a point mass. However, in this work we show that the specific origin is an inconsistency in the translation of the singular sources into jump conditions. More importantly, we identify the correct implementation of the sources at late times as the sufficient condition guaranteeing the absence of Jost junk solutions.
- The gravitational-wave signals emitted by Extreme-Mass-Ratio Inspirals will be hidden in the instrumental LISA noise and the foreground noise produced by galactic binaries in the LISA band. Then, we need accurate gravitational-wave templates to extract these signals from the noise and obtain the relevant physical parameters. This means that in the modeling of these systems we have to take into account how the orbit of the stellar-mass compact object is modified by the action of its own gravitational field. This effect can be described as the action of a local force, the self-force. We present a time-domain technique to compute the self-force for geodesic eccentric orbits around a non-rotating massive black hole. To illustrate the method we have applied it to a testbed model consisting of scalar charged particle orbiting a non-dynamical black hole. A key feature of our method is that it does not introduce a small scale associated with the stellar-mass compact object. This is achieved by using a multidomain framework where the particle is located at the interface between two subdomains. In this way, we just have to evolve homogeneous wave-like equations with smooth solutions that have to be communicated across the subdomain boundaries using appropriate junction conditions. The numerical technique that we use to implement this scheme is the pseudospectral collocation method. We show the suitability of this technique for the modeling of Extreme-Mass-Ratio Inspirals and show that it can provide accurate results for the self-force.
- Sep 29 2010 gr-qc astro-ph.IM arXiv:1009.5651v1The LISA PathFinder DMU (Data Management Unit) flight model was formally accepted by ESA and ASD on 11 February 2010, after all hardware and software tests had been successfully completed. The diagnostics items are scheduled to be delivered by the end of 2010. In this paper we review the requirements and performance of this instrumentation, specially focusing on the Radiation Monitor and the DMU, as well as the status of their programmed use during mission operations, on which work is ongoing at the time of writing.
- [abridged] The inspiral of a stellar compact object into a massive black hole is one of the main sources of gravitational waves for the future space-based Laser Interferometer Space Antenna. We expect to be able to detect and analyze many cycles of these slowly inspiraling systems. To that end, the use of very precise theoretical waveform templates in the data analysis is required. To build them we need to have a deep understanding of the gravitational backreaction mechanism responsible for the inspiral. The self-force approach describes the inspiral as the action of a local force that can be obtained from the regularization of the perturbations created by the stellar compact object on the massive black hole geometry. In this paper we extend a new time-domain technique for the computation of the self-force from the circular case to the case of eccentric orbits around a non-rotating black hole. The main idea behind our scheme is to use a multidomain framework in which the small compact object, described as a particle, is located at the interface between two subdomains. Then, the equations at each subdomain are homogeneous wave-type equations, without distributional sources. In this particle-without-particle formulation, the solution of the equations is smooth enough to provide good convergence properties for the numerical computations. This formulation is implemented by using a pseudospectral collocation method for the spatial discretization, combined with a Runge Kutta algorithm for the time evolution. We present results from several simulations of eccentric orbits in the case of a scalar charged particle around a Schwarzschild black hole. In particular, we show the convergence of the method and its ability to resolve the field and its derivatives across the particle location. Finally, we provide numerical values of the self-force for different orbital parameters.
- We introduce a new time-domain method for computing the self-force acting on a scalar particle in a Schwarzschild geometry. The principal feature of our method consists in the division of the spatial domain into several subdomains and locating the particle at the interface betweem two them. In this way, we avoid the need of resolving a small length scale associated with the presence of a particle in the computational domain and, at the same time, we avoid numerical problems due to the low differentiability of solutions of equations with point-like singular behaviour.
- Mar 04 2009 gr-qc astro-ph.HE arXiv:0903.0505v2The description of the inspiral of a stellar-mass compact object into a massive black hole sitting at a galactic centre is a problem of major relevance for the future space-based gravitational-wave observatory LISA (Laser Interferometer Space Antenna), as the signals from these systems will be buried in the data stream and accurate gravitational-wave templates will be needed to extract them. The main difficulty in describing these systems lies in the estimation of the gravitational effects of the stellar-mass compact object on his own trajectory around the massive black hole, which can be modeled as the action of a local force, the self-force. In this paper, we present a new time-domain numerical method for the computation of the self-force in a simplified model consisting of a charged scalar particle orbiting a nonrotating black hole. We use a multi-domain framework in such a way that the particle is located at the interface between two domains so that the presence of the particle and its physical effects appear only through appropriate boundary conditions. In this way we eliminate completely the presence of a small length scale associated with the need of resolving the particle. This technique also avoids the problems associated with the impact of a low differentiability of the solution in the accuracy of the numerical computations. The spatial discretization of the field equations is done by using the pseudospectral collocation method and the time evolution, based on the method of lines, uses a Runge-Kutta solver. We show how this special framework can provide very efficient and accurate computations in the time domain, which makes the technique amenable for the intensive computations required in the astrophysically-relevant scenarios for LISA.
- Nov 04 2008 gr-qc arXiv:0811.0294v1Extreme-mass-ratio inspirals (EMRIs), stellar-mass compact objects (SCOs) inspiralling into a massive black hole, are one of the main sources of gravitational waves expected for the Laser Interferometer Space Antenna (LISA). To extract the EMRI signals from the expected LISA data stream, which will also contain the instrumental noise as well as other signals, we need very accurate theoretical templates of the gravitational waves that they produce. In order to construct those templates we need to account for the gravitational backreaction, that is, how the gravitational field of the SCO affects its own trajectory. In general relativity, the backreaction can be described in terms of a local self-force, and the foundations to compute it have been laid recently. Due to its complexity, some parts of the calculation of the self-force have to be performed numerically. Here, we report on an ongoing effort towards the computation of the self-force based on time-domain multi-grid pseudospectral methods.
- Oct 09 2008 gr-qc arXiv:0810.1491v1The Data and Diagnostics Subsystem of the LTP hardware and software are at present essentially ready for delivery. In this presentation we intend to describe the scientific and technical aspects of this subsystem, which includes thermal diagnostics, magnetic diagnostics and a Radiation Monitor, as well as the prospects for their integration within the rest of the LTP. We also sketch a few lines of progress recently opened up towards the more demanding diagnostics requirements which will be needed for LISA.