results for au:Bobrov_I in:physics

- Reconfigurability of integrated photonic chips plays a key role in current experiments in the area of linear-optical quantum computing. We demonstrate a reconfigurable multiport interferometer implemented as a femtosecond laser-written integrated photonic device. The device includes a femtosecond laser-written $4\times 4$ multiport interferometer equipped with 12 thermooptical phase shifters, making it a universal programmable linear-optical circuit. We achieve a record fast switching time for a single nested Mach-Zender interferometer of $\sim10$ ms and quantitatively analyse the reconfigurability of the optical circuit. We believe, that our results will improve the current state of quantum optical experiments utilizing femtosecond laser-written photonic circuits.
- Oct 24 2016 quant-ph physics.optics arXiv:1610.06757v1Spatial states of single photons and spatially entangled photon pairs are becoming an important resource in quantum communication. This additional degree of freedom provides an almost unlimited information capacity, making the development of high-quality sources of spatial entanglement a well-motivated research direction. We report an experimental method for generation of photon pairs in a maximally entangled spatial state. In contrast to existing techniques the method does not require post-selection and allows one to use the full photon flux from the nonlinear crystal, providing a tool for creating high-brightness sources of pure spatially entangled photons. Such sources are a prerequisite for emerging applications in free-space quantum communication.
- Oct 28 2014 quant-ph physics.optics arXiv:1410.6925v1Transformation and detection of photons in higher-order spatial modes usually requires complicated holographic techniques. Detectors based on spatial holograms suffer from non-idealities and should be carefully calibrated. We report a novel method for analyzing the quality of projective measurements in spatial mode basis inspired by quantum detector tomography. It allows us to calibrate the detector response using only gaussian beams. We experimentally investigate the inherent inaccuracy of the existing methods of mode transformation and provide a full statistical reconstruction of the POVM (positive operator valued measure) elements for holographic spatial mode detectors.
- Feb 11 2014 quant-ph physics.optics arXiv:1402.2055v2We use a fiber based double slit Young interferometer for studying the far-field spatial distribution of the two-photon coincidence rate (coincidence pattern) for various quantum states with different degree of spatial entanglement. The realized experimental approach allows to characterize coincidence patterns for different states without any modifications of the setup. Measurements were carried out with path-entangled and separable states. The dependence of the coincidence pattern on the phase of the interferometer for superposition and separable states was studied. The results have implications for using of nonclassical light in multiphoton imaging, quantum lithography, and studies of phase decoherence.
- Oct 12 2012 quant-ph physics.optics arXiv:1210.3212v1We experimentally study the properties of coherent mode decomposition for intensity correlation function of quasi-thermal light. We use the technique of spatial mode selection developed for studying transverse entanglement of photon pairs, and show that it can be extended to characterize classical spatial correlations. Our results demonstrate the existence of a unique for a given thermal source basis of coherent modes, correlated in a way much resembling the Schmidt modes of spatially entangled photons.