results for au:Appleby_M in:quant-ph

- Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs and their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using GrÃ¶bner bases, this method has probably been taken as far as is possible with current computer technology. Here we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of a SIC. Using this method we have calculated 69 new exact solutions, including 9 new dimensions where previously only numerical solutions were known, which more than triples the number of known exact solutions. In some cases the solutions require number fields with degrees as high as 12,288. We use these solutions to confirm that they obey the number-theoretic conjectures and we address two questions suggested by the previous work.
- Jan 20 2017 quant-ph arXiv:1701.05200v1We give an overview of some remarkable connections between symmetric informationally complete measurements (SIC-POVMs, or SICs) and algebraic number theory, in particular, a connection with Hilbert's 12th problem. The paper is meant to be intelligible to a physicist who has no prior knowledge of either Galois theory or algebraic number theory.
- Dec 13 2016 quant-ph arXiv:1612.03234v2We reconstruct quantum theory starting from the premise that, as Asher Peres remarked, "Unperformed experiments have no results." The tools of modern quantum information theory, and in particular the symmetric informationally complete (SIC) measurements, provide a concise expression of how exactly Peres's dictum holds true. That expression is a constraint on how the probability distributions for outcomes of different, mutually exclusive experiments mesh together, a type of constraint not foreseen in classical thinking. Taking this as our foundational principle, we show how to reconstruct the formalism of quantum theory in finite-dimensional Hilbert spaces. Along the way, we derive a condition for the existence of a d-dimensional SIC.
- Let K be a real quadratic field. For certain K with sufficiently small discriminant we produce explicit unit generators for specific ray class fields of K using a numerical method that arose in the study of complete sets of equiangular lines in $\mathbb{C}^d$ (known in quantum information as symmetric informationally complete measurements or SICs). The construction in low dimensions suggests a general recipe for producing unit generators in infinite towers of ray class fields above arbitrary K and we summarise this in a conjecture. Such explicit generators are notoriously difficult to find, so this recipe may be of some interest. In a forthcoming paper we shall publish promising results of numerical comparisons between the logarithms of these canonical units and the values of L-functions associated to the extensions, following the programme laid out in the Stark Conjectures.