results for au:Alonso_J in:physics

- The focus of this paper is on optimizing the electron-antineutrino source for the IsoDAR (Isotope Decay at Rest) experimental program. IsoDAR will perform sensitive short-baseline neutrino oscillation and electroweak measurements, among other Beyond Standard Model searches, in combination with KamLAND and/or other suitable detectors. IsoDAR will rely on the high-$Q$ $\beta^-$ decay of the $^{8}$Li isotope for producing electron-antineutrinos, created mainly via neutron capture in an isotopically enriched $^{7}$Li sleeve surrounding the Be target. In particular, this paper examines the performance, defined in terms of absolute $^{8}$Li (or, equivalently, electron-antineutrino) production rate, of various candidate sleeve materials, including a lithium-fluoride, beryllium-fluoride mixture ("FLiBe") sleeve and a homogeneous mixture of lithium and beryllium ("Li-Be"). These studies show that the $^{8}$Li yield can be increased substantially by employing a Li-Be sleeve and therefore motivate significant changes to the nominal IsoDAR design.
- May 01 2018 physics.plasm-ph arXiv:1804.11104v2The component of the neoclassical electrostatic potential that is non-constant on the magnetic surface, that we denote by $\tilde\varphi$, can affect radial transport of highly charged impurities, and this has motivated its inclusion in some modern neoclassical codes. The number of neoclassical simulations in which $\tilde\varphi$ is calculated is still scarce, partly because they are usually demanding in terms of computational resources, especially at low collisionality. In this paper the size, the scaling with collisionality and with aspect ratio, and the structure of $\tilde\varphi$ on the magnetic surface are analytically derived in the $1/\nu$, $\sqrt{\nu}$ and superbanana-plateau regimes of stellarators close to omnigeneity; i. e. stellarators that have been optimized for neoclassical transport. It is found that the largest $\tilde\varphi$ that the neoclassical equations admit scales linearly with the inverse aspect ratio and with the size of the deviation from omnigeneity. Using a model for a perturbed omnigeneous configuration, the analytical results are verified and illustrated with calculations by the code KNOSOS.
- May 01 2018 cond-mat.mtrl-sci physics.app-ph arXiv:1804.10770v1Hybrid organic-inorganic perovskites, MAPbX3 (X= halogen), containing methylammonium (MA: CH3-NH3+) in the large voids conformed by the PbX6 octahedral network, are the active absorption materials in the new generation of solar cells. CH3NH3PbBr3 is a promising alternative with a large band-gap that gives rise to a high open circuit voltage. A deep knowledge of the crystal structure and, in particular, the MA conformation inside the perovskite cage across the phase transitions undergone below room temperature, seems essential to establish structure-property correlations that may drive to further improvements. The presence of protons requires the use of neutrons, combined with synchrotron XRD data that help to depict subtle symmetry changes undergone upon cooling. We present a consistent picture of the structural features of this fascinating material, in complement with photocurrent measurements from a photodetector device, demonstrating the potential of MAPbBr3 in optoelectronics.
- Apr 30 2018 physics.plasm-ph arXiv:1804.10424v1In the present work we report recent radial electric field measurements carried out with the Doppler reflectometry system in the TJ-II stellarator. The study focuses on the fact that, under some conditions, the radial electric field measured at different points over the same flux surface shows significantly different values. A numerical analysis is carried out considering the contribution arising from the radial dependence of $\Phi_1$ as a possible correction term to the total radial electric field. Here $\Phi_1$ is the neoclassical electrostatic potential variation over the surface. The comparison shows good agreement in some aspects, like the conditions under which this correction is large (electron-root conditions) or negligible (ion-root conditions). But it disagrees in others like the sign of the correction. The results are discussed together with the underlying reasons of this partial disagreement. In addition, motivated by the recent installation of the dual Doppler reflectometry system in Wendelstein 7-X (W7-X), $\Phi_1$ estimations for W7-X are revisited considering Core-Electron-Root-Plasma (CERC) plasmas from its first experimental campaign. The simulations show larger values of $\Phi_1$ under electron-root conditions than under ion root ones. The contribution from the kinetic electron response is shown to become important at some radii. All this results in a potential variation size noticeably larger than estimated in our previous work in W7-X \citeRegana_nf_57_056004_2017 for other plasma parameters and another configuration.
- Mar 16 2018 physics.plasm-ph arXiv:1803.05691v1The control of impurity accumulation is one of the main challenges for future stellarator fusion reactors. The standard argument to explain this accumulation relies on the, in principle, large inward pinch in the neoclassical impurity flux caused by the typically negative radial electric field in stellarators. This simplified interpretation was proven to be flawed by Helander et al. [Phys. Rev. Lett. 118, 155002 (2017)], who showed that in a relevant regime (low-collisionality main ions and collisional impurities) the radial electric field does not drive impurity transport. In that reference, the effect of the component of the electric field that is tangent to the magnetic surface was not included. In this Letter, an analytical calculation of the neoclassical radial impurity flux incorporating such effect is given, showing that it can be very strong for highly charged impurities and that, once it is taken into account, the dependence of the impurity flux on the radial electric field reappears. Realistic examples are provided in which the inclusion of the tangential electric field leads to impurity expulsion.
- Mar 05 2018 physics.flu-dyn arXiv:1803.00725v1With the advent of improved computational resources, aerospace design has testing-based process to a simulation-driven procedure, wherein uncertainties in design and operating conditions are explicitly accounted for in the design under uncertainty methodology. A key source of such uncertainties in design are the closure models used to account for fluid turbulence. In spite of their importance, no reliable and extensively tested modules are available to estimate this epistemic uncertainty. In this article, we outline the EQUiPS uncertainty estimation module developed for the SU2 CFD suite that focuses on uncertainty due to turbulence models. The theoretical foundations underlying this uncertainty estimation and its computational implementation are detailed. Thence, the performance of this module is presented for a range of test cases, including both benchmark problems and flows relevant to aerospace design. Across the range of test cases, the uncertainty estimates of the module were able to account for a significant portion of the discrepancy between RANS predictions and high fidelity data.
- Jan 19 2018 physics.chem-ph arXiv:1801.06137v1We investigate decoherence, pointer states and the equilibrium distribution in the Ehrenfest Statistical Dynamics (ESD) model by considering ensembles of trajectories of simple but realistic molecular models, consisting of two classical cores and one quantum electron. The Ehrenfest model is sometimes discarded as a valid approximation to non-adiabatic coupled quantum-classical dynamics because it does not describe the decoherence in the quantum subsystem, which should exist due to its interaction with the classical subsystem. However, any rigorous statistical analysis of the Ehrenfest dynamics, such as the described ESD formalism described, proves that some decoherence-like effects, in particular purity decreasing, exist when ensembles of trajectories are considered. In this article, decoherence in ESD is studied by measuring the change in the quantum subsystem purity and by analysing the appearance of pointer states to which the system decoheres, which for our example are the eigenstates of the electronic Hamiltonian. Furthermore, following the formalism presented in previous works, the true equilibrium distribution for the ESD determined following the Balescu approach is used in the definition of potential energy surfaces dependent on the temperature and in the computation of the temperature dependence of the internuclear distance.
- Dec 12 2017 physics.plasm-ph arXiv:1712.03872v1Low-collisionality stellarator plasmas usually display a large negative radial electric field that has been expected to cause accumulation of impurities due to their high charge number. In this paper, two combined effects that can potentially modify this scenario are discussed. First, it is shown that, in low collisionality plasmas, the kinetic contribution of the electrons to the radial electric field can make it negative but small, bringing the plasma close to impurity temperature screening (i.e., to a situation in which the ion temperature gradient is the main drive of impurity transport and causes outward flux); in plasmas of very low collisionality, such as those of the Large Helical Device displaying impurity hole, screening may actually occur. Second, the component of the electric field that is tangent to the flux surface (in other words, the variation of the electrostatic potential on the flux surface), although smaller than the radial component, has recently been suggested to be an additional relevant drive for radial impurity transport. Here, it is explained that, especially when the radial electric field is small, the tangential magnetic drift has to be kept in order to correctly compute the tangential electric field, that can be larger than previously expected. This can have a strong impact on impurity transport, as we illustrate by means of simulations using the newly-developed code KNOSOS (KiNetic Orbit-averaging-SOlver for Stellarators).
- Oct 26 2017 physics.ins-det hep-ex arXiv:1710.09325v1This document describes requirements for the caverns to house the cyclotron, beam transport line, and target systems; issues associated with transport and assembly of components on the site; electrical power, cooling and ventilation; as well as issues associated with radiation protection of the environment and staff of KamLAND who will be interfacing with IsoDAR during its operational phases. Specifics of IsoDAR operations at the KamLAND site are not addressed. Recent developments in planning for deployment of IsoDAR include the identification of a potential new site for the experiment, where the target can be placed directly on the equatorial plane of the KamLAND detector, and also, an upgrade of the detector resolution to 3\%/$\sqrt{E(MeV)}$. The option of the new site might allow, depending on the results of shielding and background evaluations in KamLAND, for an increase in event rate by about a factor of 1.6 owing to increased solid angle for the detector, improving the physics reach for a same period of the experiment. Alternatively, it raises the option of reducing technical risk and cost by reducing beam intensity to maintain the originally planned event rates. This new siting option is described, and aspects the physics reach of the sterile neutrino search are updated to reflect this second option, as well as the higher resolution of the experiment. A full update of the physics capability given the new site and resolution is beyond the scope of this CDR and will be published later.
- Nov 14 2016 physics.ins-det hep-ex arXiv:1611.03548v1Configurations of the IsoDAR and DAE\deltaALUS decay-at-rest neutrino experiments are described. Injector and cyclotron developments aimed at substantial increases in beam current are discussed. The IsoDAR layout and target are described, and this experiment is compared to other programs searching for sterile neutrinos.
- Oct 20 2016 physics.plasm-ph arXiv:1610.06016v3In general, the orbit-averaged radial magnetic drift of trapped particles in stellarators is non-zero due to the three-dimensional nature of the magnetic field. Stellarators in which the orbit-averaged radial magnetic drift vanishes are called omnigeneous, and they exhibit neoclassical transport levels comparable to those of axisymmetric tokamaks. However, the effect of deviations from omnigeneity cannot be neglected in practice. For sufficiently low collision frequencies (below the values that define the $1/\nu$ regime), the components of the drifts tangential to the flux surface become relevant. This article focuses on the study of such collisionality regimes in stellarators close to omnigeneity when the gradient of the non-omnigeneous perturbation is small. First, it is proven that closeness to omnigeneity is required to preserve radial locality in the drift-kinetic equation for collisionalities below the $1/\nu$ regime. Then, it is shown that neoclassical transport is determined by two layers in phase space. One of the layers corresponds to the $\sqrt{\nu}$ regime and the other to the superbanana-plateau regime. The importance of the superbanana-plateau layer for the calculation of the tangential electric field is emphasized, as well as the relevance of the latter for neoclassical transport in the collisionality regimes considered in this paper. In particular, the tangential electric field is essential for the emergence of a new subregime of superbanana-plateau transport when the radial electric field is small. A formula for the ion energy flux that includes the $\sqrt{\nu}$ regime and the superbanana-plateau regime is given. The energy flux scales with the square of the size of the deviation from omnigeneity. Finally, it is explained why below a certain collisionality value the formulation presented in this article ceases to be valid.
- Sep 02 2016 physics.plasm-ph arXiv:1609.00281v1Measurements of the relaxation of a zonal electrostatic potential perturbation in a non-axisymmetric magnetically confined plasma are presented. A sudden perturbation of the plasma equilibrium is induced by the injection of a cryogenic hydrogen pellet in the TJ-II stellarator, which is observed to be followed by a damped oscillation in the electrostatic potential. The waveform of the relaxation is consistent with theoretical calculations of zonal potential relaxation in a non-axisymmetric magnetic geometry. The turbulent transport properties of a magnetic confinement configuration are expected to depend on the features of the collisionless damping of zonal flows, of which the present letter is the first direct observation.
- Apr 21 2016 physics.plasm-ph arXiv:1604.05914v2We review in a tutorial fashion some of the causes of impurity density variations along field lines and radial impurity transport in the moment approach framework. An explicit and compact form of the parallel inertia force valid for arbitrary toroidal geometry and magnetic coordinates is derived and shown to be non-negligible for typical TJ-II plasma conditions. In the second part of the article, we apply the fluid model including main ion-impurity friction and inertia to observations of asymmetric emissivity patterns in neutral beam heated plasmas of the TJ-II stellarator. The model is able to explain qualitatively several features of the radiation asymmetry, both in stationary and transient conditions, based on the calculated in-surface variations of the impurity density.
- Feb 26 2016 physics.acc-ph arXiv:1602.08030v1This document addresses concerns raised about possible limits, due to space charge, to the maximum H2+ ion beam current that can be injected into and accepted by a compact cyclotron. The discussion of the compact cyclotron is primarily within the context of the proposed DAEdALUS and IsoDAR neutrino experiments. These concerns are examined by the collaboration and addressed individually. While some of the concerns are valid, and present serious challenges to the proposed program, the collaboration sees no immediate showstoppers. However, some of the issues raised clearly need to be addressed carefully--analytically, through simulation, and through experiments. In this report, the matter is discussed, references are given to work already done and future plans are outlined.
- Nov 17 2015 physics.acc-ph hep-ex arXiv:1511.05130v1This conceptual design report describes the technical facility for the IsoDAR electron-antineutrino source at KamLAND. The IsoDAR source will allow an impressive program of neutrino oscillation and electroweak physics to be performed at KamLAND. This report provides information on the physics case, the conceptual design for the subsystems, alternative designs considered, specifics of installation at KamLAND, and identified needs for future development. We discuss the risks we have identified and our approach to mitigating those risks with this design. A substantial portion of the conceptual design is based on three years of experimental efforts and on industry experience. This report also includes information on the conventional facilities.
- Sep 22 2015 quant-ph physics.atom-ph arXiv:1509.06157v3Fast control of quantum systems is essential in order to make use of quantum properties before they are degraded by decoherence. This is important for quantum-enhanced information processing, as well as for pushing quantum systems into macroscopic regimes at the boundary between quantum and classical physics. Bang-bang control attains the ultimate speed limit by making large changes to control fields on timescales much faster than the system can respond, however these methods are often challenging to implement experimentally. Here we demonstrate bang-bang control of a trapped-ion oscillator using nano-second switching of the trapping potentials. We perform controlled displacements which allow us to realize quantum states with up to 10,000 quanta of energy. We use these displaced states to verify the form of the ion-light interaction at high excitations which are far outside the usual regime of operation. These methods provide new possibilities for quantum-state manipulation and generation, alongside the potential for a significant increase in operational clock speed for ion-trap quantum information processing.
- Aug 18 2015 physics.acc-ph arXiv:1508.03850v1This technical report reviews the tests performed at the Best Cyclotron Systems, Inc. facility in regards to developing a cost effective ion source, beam line transport system, and acceleration system capable of high H$_2^+$ current output for the IsoDAR (Isotope Decay At Rest) experiment. We begin by outlining the requirements for the IsoDAR experiment then provide overview of the Versatile Ion Source, Low Energy Beam Transport system, spiral inflector, and cyclotron. The experimental measurements are then discussed and the results are compared with a thorough set of simulation studies. Of particular importance we note that the Versatile Ion Source (VIS) proved to be a reliable ion source capable of generating a large amount of H$_2^+$ current. The results suggest that with further upgrades, the VIS could potentially be a suitable candidate for IsoDAR. The conclusion outlines the key results from our tests and introduces the forthcoming work this technical report has motivated.
- Jul 28 2015 physics.acc-ph arXiv:1507.07258v1IsoDAR is a novel experiment designed to measure neutrino oscillations through $\bar{\nu}_e$ disappearance, thus providing a definitive search for sterile neutrinos. In order to generate the necessary anti-neutrino flux, a high intensity primary proton beam is needed. In IsoDAR, $\mathrm{H}_2^+$ is accelerated and is stripped into protons just before the target, to overcome space charge issues at injection. As part of the design, we have refined an old proposal to use an RFQ to axially inject bunched $\mathrm{H}_2^+$ ions into the driver cyclotron. This method has several advantages over a classical low energy beam transport (LEBT) design: (1) The bunching efficiency is higher than for the previously considered two-gap buncher and thus the overall injection efficiency is higher. This relaxes the constraints on the $\mathrm{H}_2^+$ current required from the ion source. (2) The overall length of the LEBT can be reduced. (3) The RFQ can also accelerate the ions. This enables the ion source platform high voltage to be reduced from 70 kV to 15 kV, making underground installation easier. We are presenting the preliminary RFQ design parameters and first beam dynamics simulations from the ion source to the spiral inflector entrance.
- The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.
- Jan 19 2015 physics.plasm-ph arXiv:1501.03967v1The particle transport of impurities in magnetically confined plasmas under some conditions does not find, neither quantitatively nor qualitatively, a satisfactory theory-based explanation. This compromise the successful realization of thermo-nuclear fusion for energy production since its accumulation is known to be one of the causes that leads to the plasma breakdown. In standard reactor-relevant conditions this accumulation is in most stellarators intrinsic to the lack of toroidal symmetry, that leads to the neoclassical electric field to point radially inwards. This statement, that the standard theory allows to formulate, has been contradicted by some experiments that showed weaker or no accumulation under such conditions \citeIda_pop_16_056111_2009, Yoshinuma_nf_49_062002_2009. The charge state of the impurities makes its transport more sensitive to the electric fields. Thus, the short length scale turbulent electrostatic potential or its long wave-length variation on the flux surface $\Phi_{1}$ -- that the standard neoclassical approach usually neglects -- might possibly shed some light on the experimental findings. In the present work the focus is put on the second of the two, and investigate its influence of the radial transport of C$^{6+}$. We show that in LHD it is strongly modified by $\Phi_{1}$, both resulting in mitigated/enhanced accumulation at internal/external radial positions; for Wendelstein 7-X, on the contrary, $\Phi_{1}$ is expected to be considerably smaller and the transport of C$^{6+}$ not affected up to an appreciable extent; and in TJ-II the potential shows a moderate impact despite of the large amplitude of $\Phi_1$ for the parameters considered.
- The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrinos, searches for proton decay, ultra-precise solar neutrino measurements, geo- and supernova neutrinos including diffuse supernova antineutrinos, and neutrinoless double beta decay. We outline here the basic requirements of the Advanced Scintillation Detector Concept (ASDC), which combines the use of WbLS, doping with a number of potential isotopes for a range of physics goals, high efficiency and ultra-fast timing photosensors, and a deep underground location. We are considering such a detector at the Long Baseline Neutrino Facility (LBNF) far site, where the ASDC could operate in conjunction with the liquid argon tracking detector proposed by the LBNE collaboration. The goal is the deployment of a 30-100 kiloton-scale detector, the basic elements of which are being developed now in experiments such as WATCHMAN, ANNIE, SNO+, and EGADS.
- Jul 07 2014 physics.plasm-ph arXiv:1407.1223v2Quasisymmetric stellarators are a type of optimized stellarators for which flows are undamped to lowest order in an expansion in the normalized Larmor radius. However, perfect quasisymmetry is impossible. Since large flows may be desirable as a means to reduce turbulent transport, it is important to know when a stellarator can be considered to be sufficiently close to quasisymmetry. The answer to this question depends strongly on the size of the spatial gradients of the deviation from quasisymmetry and on the collisionality regime. Recently, formal criteria for closeness to quasisymmetry have been derived in a variety of situations. In particular, the case of deviations with large gradients was solved in the $1/\nu$ regime. Denoting by $\alpha$ a parameter that gives the size of the deviation from quasisymmetry, it was proven that particle fluxes do not scale with $\alpha^{3/2}$, as typically claimed, but with $\alpha$. It was also shown that ripple wells are not necessarily the main cause of transport. This paper reviews those works and presents a new result in another collisionality regime, in which particles trapped in ripple wells are collisional and the rest are collisionless.
- Jun 19 2014 quant-ph physics.atom-ph arXiv:1406.4727v2We investigate electrode geometries required to produce periodic 2-dimensional ion-trap arrays with the ions placed between two planes of electrodes. We present a generalization of previous methods for traps containing a single electrode plane to this new geometry, and show that for a given ion-electrode distance and applied voltages, the inter-ion distance can be reduced by a factor of up to 3 relative to single-plane traps. This represents an increase by a factor of 9 in the trap density and a factor of 27 in the exchange coupling between the oscillatory motion of neighboring ions. The resulting traps are also considerably deeper for bi-layer structures than for single-plane traps. These results could offer a useful path towards 2-dimensional ion arrays for quantum simulation. We also discuss issues with the fabrication of such traps.
- May 06 2014 physics.plasm-ph arXiv:1405.0841v1Plasma flow is damped in stellarators because they are not intrinsically ambipolar, unlike tokamaks, in which the flux-surface averaged radial electric current vanishes for any value of the radial electric field. Only quasisymmetric stellarators are intrinsically ambipolar, but exact quasisymmetry is impossible to achieve in non-axisymmetric toroidal configurations. By calculating the violation of intrinsic ambipolarity due to deviations from quasisymmetry, one can derive criteria to assess when a stellarator can be considered quasisymmetric in practice, i.e. when the flow damping is weak enough. Let us denote by $\alpha$ a small parameter that controls the size of a perturbation to an exactly quasisymmetric magnetic field. Recently, it has been shown that if the gradient of the perturbation is sufficiently small, the flux-surface averaged radial electric current scales as $\alpha^2$ for any value of the collisionality. It was also argued that when the gradient of the perturbation is large, the quadratic scaling is replaced by a more unfavorable one. In this paper, perturbations with large gradients are rigorously treated. In particular, it is proven that for low collisionality a perturbation with large gradient yields, at best, an $O(|\alpha|)$ deviation from quasisymmetry. Heuristic estimations in the literature incorrectly predicted an $O(|\alpha|^{3/2})$ deviation.
- Apr 07 2014 physics.plasm-ph arXiv:1404.1261v1A generic non-symmetric magnetic field does not confine magnetized charged particles for long times due to secular magnetic drifts. Stellarator magnetic fields should be omnigeneous (that is, designed such that the secular drifts vanish), but perfect omnigeneity is technically impossible. There always are small deviations from omnigeneity that necessarily have large gradients. The amplification of the energy flux caused by a deviation of size $\epsilon$ is calculated and it is shown that the scaling with $\epsilon$ of the amplification factor can be as large as linear. In opposition to common wisdom, most of the transport is not due to particles trapped in ripple wells, but to the perturbed motion of particles trapped in the omnigeneous magnetic wells around their bounce points.
- Apr 04 2014 physics.plasm-ph arXiv:1404.0932v3First observations of electrostatic potential variations within the flux surfaces of a toroidal magnetic confinement device are presented. Measurements are taken in the TJ-II stellarator with two distant Langmuir probe arrays. The edge floating potentials display differences of several tens of Volts in electron-root wave-heated plasmas. The differences are reduced for higher densities and lower electron temperatures after the ion-root electric field forms at the plasma edge. Neoclassical Monte Carlo simulations estimate the correct order of magnitude for the overall variation in potential and predict the trend observed with the radial electric field. However, for the specific location of the probes, the simulations give differences smaller than those observed experimentally.
- Oct 02 2013 physics.acc-ph physics.med-ph arXiv:1310.0237v1Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.
- As we enter the age of precision measurement in neutrino physics, improved flux sources are required. These must have a well-defined flavor content with energies in ranges where backgrounds are low and cross section knowledge is high. Very few sources of neutrinos can meet these requirements. However, pion/muon and isotope decay-at-rest sources qualify. The ideal drivers for decay-at-rest sources are cyclotron accelerators, which are compact and relatively inexpensive. This paper describes a scheme to produce decay-at-rest sources driven by such cyclotrons, developed within the DAEdALUS program. Examples of the value of the high precision beams for pursuing Beyond Standard Model interactions are reviewed. New results on a combined DAEdALUS--Hyper-K search for CP-violation that achieve errors on the mixing matrix parameter of 4 degrees to 12 degrees are presented.
- Jul 25 2013 physics.plasm-ph arXiv:1307.6579v1Fully-ionised carbon impurity flow is studied in ion-root, neutral beam heated plasmas by means of Charge Exchange Recombination Spectroscopy (CXRS) in the TJ-II stellarator. Perpendicular flows are found to be in reasonable agreement with neoclassical calculations of the radial electric field. The parallel flow of the impurity is obtained at two locations of the same flux surface after subtraction of the calculated Pfirsch-Schlüter parallel velocity. For the medium density plasmas studied, $\bar{n}_{\rm e}\in(1.2-2.4)\times 10^{19}$ m$^{-3}$, the measured impurity flow is found to be inconsistent with a total incompressible flow, i.e. $\nabla\cdot{\bf u}_z\ne0$, thus contradicting the usual assumption of a constant density on each flux surface. The experimentally observed velocity deviations are compared with the parallel return flow calculated from a modelled impurity density redistribution driven by ion-impurity friction. Although the calculated return flow substantially modifies the incompressible velocity pattern, the modifications do not explain the in-surface variations of impurity parallel mass flow at the precise locations of the CXRS measurements. Small inhomogeneities of the electrostatic potential in a surface are also shown to affect the impurity redistribution but do not provide a better understanding of the measurements.
- Jul 15 2013 physics.plasm-ph arXiv:1307.3393v3Rotation is favorable for confinement, but a stellarator can rotate at high speeds if and only if it is sufficiently close to quasisymmetry. This article investigates how close it needs to be. For a magnetic field $\mathbf{B} = \mathbf{B}_0 + \alpha \mathbf{B}_1$, where $\mathbf{B}_0$ is quasisymmetric, $\alpha\mathbf{B}_1$ is a deviation from quasisymmetry, and $\alpha\ll 1$, the stellarator can rotate at high velocities if $\alpha < \epsilon^{1/2}$, with $\epsilon$ the ion Larmor radius over the characteristic variation length of $\mathbf{B}_0$. The cases in which this result may break down are discussed. If the stellarator is sufficiently quasisymmetric in the above sense, the rotation profile, and equivalently, the long-wavelength radial electric field, are not set neoclassically; instead, they can be affected by turbulent transport. Their computation requires the $O(\epsilon^2)$ pieces of both the turbulent and the long-wavelength components of the distribution function. This article contains the first step towards a formulation to calculate the rotation profile by providing the equations determining the long-wavelength components of the $O(\epsilon^2)$ pieces.
- Jul 12 2013 physics.acc-ph hep-ex arXiv:1307.2949v1This whitepaper describes the status of the DAEdALUS program for development of high power cyclotrons as of the time of the final meeting of the Division of Particles and Fields 2013 Community Study ("Snowmass"). We report several new results, including a measurement capability between 4 and 12 degrees on the CP violating parameter in the neutrino sector. Past results, including the capability of the IsoDAR high Dm^2 antielectron neutrino disappearance search, are reviewed. A discussion of the R&D successes, including construction of a beamline teststand, and future plans are provided. This text incorporates short whitepapers written for subgroups in the Intensity Frontier and Frontier Capabilities Working Groups that are available on the Snowmass website.
- Jul 08 2013 physics.plasm-ph arXiv:1307.1658v3The drift kinetic equation is solved for low density TJ-II plasmas employing slowly varying, time-dependent profiles. This allows to simulate density ramp-up experiments and to describe from first principles the formation and physics of the radial electric field shear, which is associated to the transition from electron to ion root. We show that the range of frequencies of plasma potential fluctuations in which zonal flows are experimentally observed is neoclassically undamped in a neighborhood of the transition. This makes the electron root regime of stellarators, close to the transition to ion root, a propitious regime for the study of zonal-flow evolution. We present simulations of collisionless relaxation of zonal flows, in the sense of the Rosenbluth and Hinton test, that show an oscillatory behaviour in qualitative agreement with the experiment close to the transition.
- Jun 18 2013 physics.optics quant-ph arXiv:1306.3780v1We describe laser systems for photoionization, Doppler cooling and quantum state manipulation of beryllium ions. For photoionization of neutral beryllium, we have developed a continuous-wave 235 nm source obtained by two stages of frequency doubling from a diode laser at 940 nm. The system delivers up to 400 mW at 470 nm and 28 mW at 235 nm. For control of the beryllium ion, three laser wavelengths at 313 nm are produced by sum-frequency generation and second-harmonic generation from four infrared fiber lasers. Up to 7.2 W at 626 nm and 1.9 W at 313 nm are obtained using two pump beams at 1051 and 1551 nm. Intensity fluctuations below 0.5 % per hour (during 8 hours of operation) have been measured at a 313 nm power of 1 W. These systems are used to load beryllium ions into a segmented ion trap.
- In spite of the relevance of the proposal introduced in the recent work A. Abedi, N. T. Maitra and E. K. U. Gross, J. Chem. Phys. 137, 22A530, 2012, there is an important ingredient which is missing. Namely, the proof that the norms of the electronic and nuclear wavefunctions which are the solutions to the nonlinear equations of motion are preserved by the evolution. To prove the conservation of these norms is precisely the objective of this Comment.
- This whitepaper reviews design options for the IsoDAR electron antineutrino source. IsoDAR is designed to produce $2.6 \times 10^{22}$ electron antineutrinos per year with an average energy of 6.4 MeV, using isotope decay-at-rest. Aspects which must be balanced for cost-effectiveness include: overall cost; rate and energy distribution of the electron antineutrino flux and backgrounds; low technical risk; compactness; simplicity of underground construction and operation; reliability; value to future neutrino physics programs; and value to industry. We show that the baseline design outlined here is the most cost effective.
- Oct 16 2012 physics.acc-ph hep-ex arXiv:1210.3679v1Using H2+ ions is expected to mitigate the two major impediments to accelerating very high currents in cyclotrons, due to lower space charge at injection, and stripping extraction. Planning for peak currents of 10 particle milliamps at 800 MeV/amu, these cyclotrons can generate adequate neutrino fluxes for Decay-At-Rest (DAR) studies of neutrino oscillation and CP violation. The Injector Cyclotron, at 60 MeV/amu can also provide adequate fluxes of electron antineutrinos from 8Li decay for sterile neutrino searches in existing liquid scintillator detectors at KamLAND or SNO+. This paper outlines programs for designing and building these machines.
- Sep 28 2012 physics.plasm-ph arXiv:1209.6248v1Poloidal and toroidal velocities of fully-ionised carbon are measured by means of charge exchange recombination spectroscopy (CXRS) in the TJ-II stellarator. We present a detailed treatment of the 3D geometry and show that flow measurements, performed at different locations of the same flux surface, are compatible with flow incompressibility for the low density plasmas under study (line averaged electron densities $\bar{n}_e\,\le\,10^{19}$ m$^{-3}$). Furthermore, comparison with neoclassical calculations shows quantitative agreement with the measured radial electric field and ion bootstrap parallel flow in the absence of an external momentum input.
- Quantum control of the motional states of trapped ions through fast switching of trapping potentialsAug 21 2012 quant-ph physics.atom-ph arXiv:1208.3986v2We propose a new scheme for supplying voltages to the electrodes of microfabricated ion traps, enabling access to a regime in which changes to the trapping potential are made on timescales much shorter than the period of the secular oscillation frequencies of the trapped ions. This opens up possibilities for speeding up the transport of ions in segmented ion traps and also provides access to control of multiple ions in a string faster than the Coulomb interaction between them. We perform a theoretical study of ion transport using these methods in a surface-electrode trap, characterizing the precision required for a number of important control parameters. We also consider the possibilities and limitations for generating motional state squeezing using these techniques, which could be used as a basis for investigations of Gaussian-state entanglement.
- Jul 23 2012 physics.acc-ph arXiv:1207.4895v2DAE$\delta$ALUS (Decay-At-rest Experiment for $\delta_{CP}$ studies At the Laboratory for Underground Science) provides a new approach to the search for CP violation in the neutrino sector. High-power continuous-wave proton cyclotrons efficiently provide the necessary proton beams with an energy of up to 800 MeV to create neutrinos from pion and muon decay-at-rest. The experiment searches for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e$ at short baselines corresponding to the atmospheric $\Delta m^2$ region. The $\bar{\nu}_e$ will be detected via inverse beta decay. Thus, the cyclotrons will be employed at a future ultra-large gadolinium-doped water or scintillator detector. In this paper we address the most challenging questions regarding a cyclotron-based high-power proton driver in the megawatt range with a kinetic energy of 800 MeV. Aspects of important subsystems like the ion source and injection chain, the magnet design and radio frequency system will be addressed. Precise beam dynamics simulations, including space charge and the $\text{H}_2^+$ stripping process, are the base for the characterization and quantification of the beam halo -- one of the most limiting processes in high-power particle accelerators.
- Jun 28 2012 physics.plasm-ph arXiv:1206.6191v1The dynamics of fluctuating electric field structures in the edge of the TJ-II stellarator, that display zonal flow-like traits, is studied. These structures have been shown to be global and affect particle transport dynamically [J.A. Alonso et al., Nucl. Fus. 52 063010 (2012)]. In this article we discuss possible drive (Reynolds stress) and damping (Neoclassical viscosity, geodesic transfer) mechanisms for the associated ExB velocity. We show that: (a) while the observed turbulence-driven forces can provide the necessary perpendicular acceleration, a causal relation could not be firmly established, possibly because of the locality of the Reynolds stress measurements, (b) the calculated neoclassical viscosity and damping times are comparable to the observed zonal flow relaxation times, and (c) although an accompanying density modulation is observed to be associated to the zonal flow, it is not consistent with the excitation of pressure side-bands, like those present in geodesic acoustic oscillations, caused by the compression of the ExB flow field.
- Jun 06 2012 physics.plasm-ph arXiv:1206.1025v2The drift kinetic equation is solved for low density TJ-II plasmas employing slowly varying, time-dependent profiles. This allows to simulate density ramp-up experiments and describe from first principles the formation and physics of the radial electric field shear layer. The main features of the transition are perfectly captured by the calculation, and good quantitative agreement is also found. The results presented here, that should be valid for other non-quasisymmetric stellarators, provide a fundamental explanation for a wealth of experimental observations connected to the shear layer emergence in TJ-II. The key quantity is the neoclassical viscosity, which is shown to go smoothly to zero when the critical density is approached from below. This makes it possible for turbulence-related phenomena, and particularly zonal flows, to arise in the neighborhood of the transition.
- May 29 2012 physics.chem-ph arXiv:1205.6181v2At non-zero temperature and when a system has low-lying excited electronic states, the ground-state Born--Oppenheimer approximation breaks down and the low-lying electronic states are involved in any chemical process. In this work, we use a temperature-dependent effective potential for the nuclei which can accomodate the influence of an arbitrary number of electronic states in a simple way, while at the same time producing the correct Boltzmann equibrium distribution for the electronic part. With the help of this effective potential, we show that thermally-activated low-lying electronic states can have a significant effect in molecular properties for which electronic excitations are oftentimes ignored. We study the thermal expansion of the Manganese dimer, Mn$_2$, where we find that the average bond length experiences a change larger than the present experimental accuracy upon the inclusion of the excited states into the picture. We also show that, when these states are taken into account, reaction rate constants are modified. In particular, we study the opening of the ozone molecule, O$_3$, and show that in this case the rate is modified as much as a 20% with respect to the ground-state Born--Oppenheimer prediction.
- We discuss the evolution of purity in mixed quantum/classical approaches to electronic nonadiabatic dynamics in the context of the Ehrenfest model. As it is impossible to exactly determine initial conditions for a realistic system, we choose to work in the statistical Ehrenfest formalism that we introduced in Ref. 1. From it, we develop a new framework to determine exactly the change in the purity of the quantum subsystem along the evolution of a statistical Ehrenfest system. In a simple case, we verify how and to which extent Ehrenfest statistical dynamics makes a system with more than one classical trajectory and an initial quantum pure state become a quantum mixed one. We prove this numerically showing how the evolution of purity depends on time, on the dimension of the quantum state space $D$, and on the number of classical trajectories $N$ of the initial distribution. The results in this work open new perspectives for studying decoherence with Ehrenfest dynamics.
- Apr 19 2012 physics.plasm-ph arXiv:1204.4060v1Floating potential structures that are correlated over a long distance are observed with a 2D probe array in the plasma edge of the TJ-II stellarator. We introduce a method based on the Singular Value Decomposition to extract the spatio-temporal structure of the global, fluctuating, zonal-flow-like floating potential from the combined measurements of a 2D probe array and a distant single probe. The amplitude of these global structures is seen to modulate not only the high k-poloidal spectral power of the local turbulence, but also particle transport into the unconfined Scraped-Off Layer, as observed by H-alpha monitors around the device. These observations provide the first direct evidence of the global modulation of transport by zonal flow-like structures. The ability to identify spontaneous and collective rotation events with flux surface symmetry opens up the possibility to perform unperturbative studies of the effective viscosity in stellarators and tokamaks.
- The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations.
- Jul 05 2011 physics.acc-ph hep-ex arXiv:1107.0652v1This report provides a first design for H2+ accelerators as the DAEdALUS neutrino sources. A description of all aspects of the system, from the ion source to the extracted beam, is provided. The analysis provides a first proof of principle of a full cyclotron system which can provide the necessary beam power for the CP violation search proposed by the DAEdALUS Collaboration.
- Quantum dynamics (i.e., the Schrödinger equation) and classical dynamics (i.e., Hamilton equations) can both be formulated in equal geometric terms: a Poisson bracket defined on a manifold. In this paper we first show that the hybrid quantum-classical dynamics prescribed by the Ehrenfest equations can also be formulated within this general framework, what has been used in the literature to construct propagation schemes for Ehrenfest dynamics. Then, the existence of a well defined Poisson bracket allows to arrive to a Liouville equation for a statistical ensemble of Ehrenfest systems. The study of a generic toy model shows that the evolution produced by Ehrenfest dynamics is ergodic and therefore the only constants of motion are functions of the Hamiltonian. The emergence of the canonical ensemble characterized by the Boltzmann distribution follows after an appropriate application of the principle of equal a priori probabilities to this case. Once we know the canonical distribution of a Ehrenfest system, it is straightforward to extend the formalism of Nosé (invented to do constant temperature Molecular Dynamics by a non-stochastic method) to our Ehrenfest formalism. This work also provides the basis for extending stochastic methods to Ehrenfest dynamics.
- Mar 29 2011 physics.atm-clus arXiv:1103.5306v1We have employed non-adiabatic molecular dynamics based on time-dependent density-functional theory to characterize the scattering behaviour of a proton with the Li$_4$ cluster. This technique assumes a classical approximation for the nuclei, effectively coupled to the quantum electronic system. This time-dependent theoretical framework accounts, by construction, for possible charge transfer and ionization processes, as well as electronic excitations, which may play a role in the non-adiabatic regime. We have varied the incidence angles in order to analyze the possible reaction patterns. The initial proton kinetic energy of 10 eV is sufficiently high to induce non-adiabatic effects. For all the incidence angles considered the proton is scattered away, except in one interesting case in which one of the Lithium atoms captures it, forming a LiH molecule. This theoretical formalism proves to be a powerful, effective and predictive tool for the analysis of non-adiabatic processes at the nanoscale.
- Mar 24 2011 physics.bio-ph physics.comp-ph arXiv:1103.4425v1In order to accelerate molecular dynamics simulations, it is very common to impose holonomic constraints on their hardest degrees of freedom. In this way, the time step used to integrate the equations of motion can be increased, thus allowing, in principle, to reach longer total simulation times. The imposition of such constraints results in an aditional set of Nc equations (the equations of constraint) and unknowns (their associated Lagrange multipliers), that must be solved in one way or another at each time step of the dynamics. In this work it is shown that, due to the essentially linear structure of typical biological polymers, such as nucleic acids or proteins, the algebraic equations that need to be solved involve a matrix which is banded if the constraints are indexed in a clever way. This allows to obtain the Lagrange multipliers through a non-iterative procedure, which can be considered exact up to machine precision, and which takes O(Nc) operations, instead of the usual O(Nc3) for generic molecular systems. We develop the formalism, and describe the appropriate indexing for a number of model molecules and also for alkanes, proteins and DNA. Finally, we provide a numerical example of the technique in a series of polyalanine peptides of different lengths using the AMBER molecular dynamics package.
- Quantum dynamics (e.g., the Schrödinger equation) and classical dynamics (e.g., Hamilton equations) can both be formulated in equal geometric terms: a Poisson bracket defined on a manifold. The difference between both worlds is due to the presence of extra structure in the quantum case, that leads to the appearance of the probabilistic nature of the measurements and the indetermination and superposition principles. In this paper we first show that the quantum-classical dynamics prescribed by the Ehrenfest equations can also be formulated within this general framework, what has been used in the literature to construct propagation schemes for Ehrenfest dynamics. Then, the existence of a well defined Poisson bracket allows to arrive to a Liouville equation for a statistical ensemble of Ehrenfest systems. The study of a generic toy model shows that the evolution produced by Ehrenfest dynamics is ergodic and therefore the only constants of motion are functions of the Hamiltonian. The emergence of the canonical ensemble characterized by the Boltzmann's distribution follows after an appropriate application of the principle of equal a priori probabilities to this case. This work provides the basis for extending stochastic methods to Ehrenfest dynamics.
- Oct 06 2010 hep-ex physics.ins-det arXiv:1010.0971v1Neutrino physics focuses on huge detectors deep underground. The Sanford Lab in South Dakota will build a 300 kiloton water-Cherenkov detector 1500 meters deep for muon neutrino oscillation studies of the mass hierarchy and CP violation. This will be used by the Long Baseline experiment (LBNE) detecting few GeV neutrinos from Fermilab, 1300 km away. The DAE\deltaALUS Collaboration also plans several neutrino-production sites at closer distances up to 20 km from the 300 kT detector, producing muon antineutrinos from stopped pions. The complementarity with LBNE greatly enhances results, and enthusiasm is mounting to do both experiments. DAE\deltaALUS needs 0.8-1 GeV accelerators with mA proton beams. Three sites at 1.5, 8 and 20 km from the 300 kT detector require several accelerators. The cost per machine must be below 1/10 of existing megawatt-class proton machines. Beyond high power and energy, beam parameters are modest. Challenges are reliability, control of beam loss and minimizing activation. Options being studied are: a compact superconducting cyclotron; a ring cyclotron accelerating H2+ (with stripping extraction); and a stacked cyclotron with up to 9 planes sharing the same magnet yoke and rf systems.
- Jun 25 2010 physics.comp-ph q-bio.QM arXiv:1006.4847v3In this work, we introduce an algorithm to compute the derivatives of physical observables along the constrained subspace when flexible constraints are imposed on the system (i.e., constraints in which the hard coordinates are fixed to configuration-dependent values). The presented scheme is exact, it does not contain any tunable parameter, and it only requires the calculation and inversion of a sub-block of the Hessian matrix of second derivatives of the function through which the constraints are defined. We also present a practical application to the case in which the sought observables are the Euclidean coordinates of complex molecular systems, and the function whose minimization defines the constraints is the potential energy. Finally, and in order to validate the method, which, as far as we are aware, is the first of its kind in the literature, we compare it to the natural and straightforward finite-differences approach in three molecules of biological relevance: methanol, N-methyl-acetamide and a tri-glycine peptide
- Jun 03 2010 physics.ins-det hep-ex arXiv:1006.0260v1DAEdALUS, a Decay-At-rest Experiment for delta_CP studies At the Laboratory for Underground Science, provides a new approach to the search for CP violation in the neutrino sector. The design utilizes low-cost, high-power proton accelerators under development for commercial uses. These provide neutrino beams with energy up to 52 MeV from pion and muon decay-at-rest. The experiment searches for aninu_mu to antinu_e at short baselines corresponding to the atmospheric Delta m^2 region. The antinu_e will be detected, via inverse beta decay, in the 300 kton fiducial-volume Gd-doped water Cherenkov neutrino detector proposed for the Deep Underground Science and Engineering Laboratory (DUSEL). DAEdALUS opens new opportunities for DUSEL. It provides a high-statistics, low-background alternative for CP violation searches which matches the capability of the conventional long-baseline neutrino experiment, LBNE. Because of the complementary designs, when DAEdALUS antineutrino data are combined with LBNE neutrino data, the sensitivity of the CP-violation search improves beyond any present proposals, including the proposal for Project X. Also, the availability of an on-site neutrino beam opens opportunities for additional physics, both for the presently planned DUSEL detectors and for new experiments at a future 300 ft campus.
- Feb 27 2010 cond-mat.other physics.chem-ph arXiv:1002.4899v3We prove that for a combined system of classical and quantum particles, it is possible to write a dynamics for the classical particles that incorporates in a natural way the Boltzmann equilibrium population for the quantum subsystem. In addition, these molecular dynamics do not need to assume that the electrons immediately follow the nuclear motion (in contrast to any adiabatic approach), and do not present problems in the presence of crossing points between different potential energy surfaces (conical intersections or spin-crossings). A practical application of this molecular dynamics to study the effect of temperature in molecular systems presenting (nearly) degenerate states - such as the avoided crossing in the ring-closure process of ozone - is presented.
- Jul 21 2009 physics.med-ph physics.bio-ph arXiv:0907.3278v2The effect of a high frequency alternating magnetic field on HeLa tumour cells incubated with ferromagnetic nanoparticles of manganese oxide perovskite La0.56(SrCa)0.22MnO3 have been studied. The particles were subjected to a size selection process and coated with silica to improve their biocompatibility. The control assays made with HeLa tumour cells showed that cell survival and growth rate were not affected by the particle internalization in cells, or by the electromagnetic field on cells without nanoparticles. However, the application of an alternating electromagnetic field to cells incubated with this silica coated manganese oxide induced a significant cellular damage that finally lead to cell death by an apoptotic mechanism. Cell death is triggered even thought the temperature increase in the cell culture during the hyperthermia treatment is lower than 0.5 C.
- Dec 16 2008 cond-mat.mtrl-sci physics.comp-ph arXiv:0812.2801v3We present in detail the recently derived ab-initio molecular dynamics (AIMD) formalism [Phys. Rev. Lett. 101 096403 (2008)], which due to its numerical properties, is ideal for simulating the dynamics of systems containing thousands of atoms. A major drawback of traditional AIMD methods is the necessity to enforce the orthogonalization of the wave-functions, which can become the bottleneck for very large systems. Alternatively, one can handle the electron-ion dynamics within the Ehrenfest scheme where no explicit orthogonalization is necessary, however the time step is too small for practical applications. Here we preserve the desirable properties of Ehrenfest in a new scheme that allows for a considerable increase of the time step while keeping the system close to the Born-Oppenheimer surface. We show that the automatically enforced orthogonalization is of fundamental importance for large systems because not only it improves the scaling of the approach with the system size but it also allows for an additional very efficient parallelization level. In this work we provide the formal details of the new method, describe its implementation and present some applications to some test systems. Comparisons with the widely used Car-Parrinello molecular dynamics method are made, showing that the new approach is advantageous above a certain number of atoms in the system. The method is not tied to a particular wave-function representation, making it suitable for inclusion in any AIMD software package.
- Oct 18 2007 cond-mat.mtrl-sci physics.comp-ph arXiv:0710.3321v5A new "on the fly" method to perform Born-Oppenheimer ab initio molecular dynamics (AIMD) is presented. Inspired by Ehrenfest dynamics in time-dependent density functional theory, the electronic orbitals are evolved by a Schroedinger-like equation, where the orbital time derivative is multiplied by a parameter. This parameter controls the time scale of the fictitious electronic motion and speeds up the calculations with respect to standard Ehrenfest dynamics. In contrast to other methods, wave function orthogonality needs not be imposed as it is automatically preserved, which is of paramount relevance for large scale AIMD simulations.
- We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.
- Jan 22 2007 physics.ins-det physics.atom-ph arXiv:physics/0701224v1The magnetic-field stability of a mass spectrometer plays a crucial role in precision mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of instabilities are temperature fluctuations in the vicinity of the trap and pressure fluctuations in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the fluctuations by at least one order of magnitude downto dT=+/-5mK and dp=+/-50mtorr has been achieved, which corresponds to a relative frequency change of 2.7x10^-9 and 1.5x10^-10, respectively. With this stabilization the frequency determination with the Penning trap only shows a linear temporal drift over several hours on the 10 ppb level due to the finite resistance of the superconducting magnet coils.
- Dec 21 2005 physics.soc-ph arXiv:physics/0512187v2We propose an extension of the evolutionary Prisoner's Dilemma cellular automata, introduced by Nowak and May \citenm92, in which the pressure of the environment is taken into account. This is implemented by requiring that individuals need to collect a minimum score $U_{min}$, representing indispensable resources (nutrients, energy, money, etc.) to prosper in this environment. So the agents, instead of evolving just by adopting the behaviour of the most successful neighbour (who got $U^{msn}$), also take into account if $U^{msn}$ is above or below the threshold $U_{min}$. If $U^{msn}<U_{min}$ an individual has a probability of adopting the opposite behaviour from the one used by its most successful neighbour. This modification allows the evolution of cooperation for payoffs for which defection was the rule (as it happens, for example, when the sucker's payoff is much worse than the punishment for mutual defection). We also analyse a more sophisticated version of this model in which the selective rule is supplemented with a "win-stay, lose-shift" criterion. The cluster structure is analyzed and, for this more complex version we found power-law scaling for a restricted region in the parameter space.
- Oct 26 2001 physics.atm-clus arXiv:physics/0110072v1The optical response of the lowest energy members of the C20 family is calculated using time-dependent density functional theory within a real-space, real-time scheme. Significant differences are found among the spectra of the different isomers, and thus we propose optical spectroscopy as a tool for experimental investigation of the structure of these important clusters.
- Jun 15 2000 cond-mat.mtrl-sci physics.chem-ph arXiv:cond-mat/0006230v1In this paper we report a theoretical study of the effects of the presence of boron in growing carbon nanotubes. We employ a well established Tight Binding model to describe the interactions responsible for the energetics of these systems, combined with the Molecular Dynamics simulation technique and Structural Relaxation calculations. We find, in agreement with the previous theoretical/experimental work of Blase \em et al. [\em Phys. Rev. Lett. \bf 83, 5078 (1999)], that boron favors (n,0) (zig-zag) tubular structures over (n,n) (arm-chair) ones by stabilizing the zig-zag edge. Furthermore, it is shown that boron has the effect of delaying the tube closure process, a fact which could explain the improved aspect ratio experimentally observed in nanotubes synthesized in the presence of boron. Our dynamical simulations lead us to propose a mechanism through which this extension of the closure time can be explained.
- Feb 08 2000 physics.chem-ph arXiv:physics/0002015v2Density functional theory has been used to study the adsorption of molecular H2 on a graphene layer. Different adsorption sites on top of atoms, bonds and the center of carbon hexagons have been considered and compared. We conclude that the most stable configuration of H2 is physisorbed above the center of an hexagon. Barriers for classical diffusion are, however, very small.
- Nov 19 1999 physics.atm-clus cond-mat arXiv:physics/9911042v2The melting-like transition in sodium clusters Na_N, with N=55, 92, and 142 is studied by using constant-energy molecular dynamics simulations. An orbital-free version of the Car-Parrinello technique is used which scales linearly with system size allowing investigation of the thermal behaviour of large clusters. The ground state isomer of Na_142 (an uncomplete three-shell icosahedron) melts in two steps: the first one (at approx. 240 K) is characterized by the high mobility of the atoms located on the cluster surface; the second, homogeneous melting (at approx. 270 K), involves diffusive motion of all the atoms across the cluster. For the case of Na_92, the icosahedral structure has a larger number of surface vacancies, and melts in two well separated steps, surface melting at approx. 130 K and homogeneous melting at approx. 240 K. Na_55, a complete two-shell icosahedron, melts in a single stage at approx. 190 K. Our results on homogeneous melting for Na_142 and Na_92 are in excellent agreement with recent experimental determinations of melting temperatures and latent heats. However, the experimentally observed enhancement of the melting temperature around N=55 is not reproduced by the calculations.
- Sep 15 1998 physics.atm-clus cond-mat arXiv:physics/9809019v2The melting-like transitions of Na8 and Na20 are investigated by ab initio constant energy molecular dynamics simulations, using a variant of the Car-Parrinello method which employs an explicit electronic kinetic energy functional of the density, thus avoiding the use of one-particle orbitals. Several melting indicators are evaluated in order to determine the nature of the various transitions, and compared with other simulations. Both Na8 and Na20 melt over a wide temperature range. For Na8, a transition is observed to begin at approx. 110 K, between a rigid phase and a phase involving isomerizations between the different permutational isomers of the ground state structure. The ``liquid'' phase is completely established at approx. 220 K. For Na20, two transitions are observed: the first, at approx. 110 K, is associated with isomerization transitions between those permutational isomers of the ground state structure which are obtained by interchanging the positions of the surface-like atoms; the second, at approx. 160 K, involves a structural transition from the ground state isomer to a new set of isomers with the surface molten. The cluster is completely ``liquid'' at approx. 220 K.
- Jun 18 1998 physics.atm-clus cond-mat arXiv:physics/9806025v2Ab initio calculations using the Perturbed Ion model, with correlation contributions included, are presented for nonstoichiometric (NaI)_nNa+ and (CsI)_nCs+ (n=1-14) cluster ions. The ground state and several low-lying isomers are identified and described. Rocksalt ground states are common and appear at cluster sizes lower than in the corresponding neutral systems. The most salient features of the measured mobilities seem to be explained by arguments related to the changes of the compactness of the clusters as a function of size. The stability of the cluster ions against evaporation of a single alkali halide molecule shows variations that explain the enhanced stabilities found experimentally for cluster sizes n=4, 6, 9, and 13. Finally, the ionization energies and the orbital eigenvalue spectrum of two (NaI)_13Na+ isomers are calculated and shown to be a fingerprint of the structure.
- Sep 24 1997 physics.atm-clus cond-mat arXiv:physics/9709032v1The structural and bonding properties of small neutral alkali-halide clusters (AX)n, with n less than or equal to 10, A=Li, Na, K, Rb and X=F, Cl, Br, I, are studied using the ab initio Perturbed Ion (aiPI) model and a restricted structural relaxation criterion. A trend of competition between rock-salt and hexagonal ring-like isomers is found and discussed in terms of the relative ionic sizes. The main conclusion is that an approximate value of r_C/r_A=0.5 (where r_C and r_A are the cationic and anionic radii) separates the hexagonal from the rock-salt structures. The classical electrostatic part of the total energy at the equilibrium geometry is enough to explain these trends. The magic numbers in the size range studied are n= 4, 6 and 9, and these are universal since they occur for all alkali-halides and do not depend on the specific ground state geometry. Instead those numbers allow for the formation of compact clusters. Full geometrical relaxations are considered for (LiF)n (n=3-7) and (AX)_3 clusters, and the effect of Coulomb correlation is studied in a few selected cases. These two effects preserve the general conclusions achieved thus far.
- A systematic theoretical study of stoichiometric clusters (NaI)n up to n=15 is performed using the ab initio Perturbed-Ion (PI) model. The structures obtained are compared to previous pair potential results, and observed differences between (NaI)n clusters and previous ab initio results for other alkali halide clusters are discussed. (NaI)n clusters with n up to 15 do not show yet a marked preference for geometries which are fragments of the bulk lattice. Instead, stacks of hexagonal rings or more open structures are obtained as ground structures in clusters with n=3, 6, 7, 9, 10, 12, 13 and 15, indicating that convergence to bulk structure is not achieved yet at this size range. Low lying isomers which are fragments of the crystal lattice exist, nevertheless, for those cases. The binding energies show that clusters with n=(4), 6, 9 and 12 molecules are specially stable. The binding energy has been decomposed in contributions which allow for an intuitive interpretation. Some electronic properties like ionization potentials and electronic energy levels are also studied.