- Admin
- Melbourne
- https://silky.github.io/
- Joined 19 May 2013

- astro-ph
- astro-ph.CO
- astro-ph.EP
- astro-ph.GA
- astro-ph.HE
- astro-ph.IM
- astro-ph.SR
- cond-mat
- cond-mat.other
- cond-mat.stat-mech
- cond-mat.str-el
- cs
- cs.AI
- cs.AR
- cs.CC
- cs.CE
- cs.CG
- cs.CL
- cs.CR
- cs.CV
- cs.DB
- cs.DL
- cs.DM
- cs.DS
- cs.ET
- cs.GT
- cs.HC
- cs.IT
- cs.LG
- cs.LO
- cs.MS
- cs.NE
- cs.PL
- cs.RO
- cs.SD
- gr-qc
- hep-ex
- hep-lat
- hep-ph
- hep-th
- math
- math.AC
- math.AG
- math.AP
- math.AT
- math.CA
- math.CO
- math.CT
- math.CV
- math.DG
- math.DS
- math.FA
- math.GM
- math.GN
- math.GR
- math.GT
- math.HO
- math.IT
- math.KT
- math.LO
- math.MG
- math.MP
- math.NA
- math.NT
- math.OA
- math.OC
- math-ph
- math.PR
- math.QA
- math.RA
- math.RT
- math.SG
- math.SP
- math.ST
- nlin.AO
- nlin.CD
- nlin.CG
- nlin.PS
- nlin.SI
- physics.acc-ph
- physics.atom-ph
- physics.bio-ph
- physics.comp-ph
- physics.data-an
- physics.gen-ph
- physics.hist-ph
- physics.plasm-ph
- physics.soc-ph
- physics.space-ph
- q-fin
- q-fin.CP
- q-fin.EC
- q-fin.GN
- q-fin.MF
- q-fin.PM
- q-fin.PR
- q-fin.RM
- q-fin.ST
- q-fin.TR
- quant-ph
- stat
- stat.AP
- stat.CO
- stat.ML
- stat.TH

- Applications which use human speech as an input require a speech interface with high recognition accuracy. The words or phrases in the recognised text are annotated with a machine-understandable meaning and linked to knowledge graphs for further processing by the target application. These semantic annotations of recognised words can be represented as a subject-predicate-object triples which collectively form a graph often referred to as a knowledge graph. This type of knowledge representation facilitates to use speech interfaces with any spoken input application, since the information is represented in logical, semantic form, retrieving and storing can be followed using any web standard query languages. In this work, we develop a methodology for linking speech input to knowledge graphs and study the impact of recognition errors in the overall process. We show that for a corpus with lower WER, the annotation and linking of entities to the DBpedia knowledge graph is considerable. DBpedia Spotlight, a tool to interlink text documents with the linked open data is used to link the speech recognition output to the DBpedia knowledge graph. Such a knowledge-based speech recognition interface is useful for applications such as question answering or spoken dialog systems.
- May 26 2017 cs.SY arXiv:1705.08920v1In conventional distributed Kalman filtering, employing diffusion strategies, each node transmits its state estimate to all its direct neighbors in each iteration. In this paper we propose a partial diffusion Kalman filter (PDKF) for state estimation of linear dynamic systems. In the PDKF algorithm every node (agent) is allowed to share only a subset of its intermediate estimate vectors at each iteration among its neighbors, which reduces the amount of internode communications. We study the stability of the PDKF algorithm where our analysis reveals that the algorithm is stable and convergent in both mean and mean-square senses. We also investigate the steady-state mean-square deviation (MSD) of the PDKF algorithm and derive a closed-form expression that describes how the algorithm performs at the steady-state. Experimental results validate the effectiveness of PDKF algorithm and demonstrate that the proposed algorithm provides a trade-off between communication cost and estimation performance that is extremely profitable.
- Sparsity helps reduce the computational complexity of deep neural networks by skipping zeros. Taking advantage of sparsity is listed as a high priority in next generation DNN accelerators such as TPU. The structure of sparsity, i.e., the granularity of pruning, affects the efficiency of hardware accelerator design as well as the prediction accuracy. Coarse-grained pruning creates regular sparsity patterns, making it more amenable for hardware acceleration but more challenging to maintain the same accuracy. In this paper we quantitatively measure the trade-off between sparsity regularity and prediction accuracy, providing insights in how to maintain accuracy while having more a more structured sparsity pattern. Our experimental results show that coarse-grained pruning can achieve a sparsity ratio similar to unstructured pruning without loss of accuracy. Moreover, due to the index saving effect, coarse-grained pruning is able to obtain a better compression ratio than fine-grained sparsity at the same accuracy threshold. Based on the recent sparse convolutional neural network accelerator (SCNN), our experiments further demonstrate that coarse-grained sparsity saves about 2x the memory references compared to fine-grained sparsity. Since memory reference is more than two orders of magnitude more expensive than arithmetic operations, the regularity of sparse structure leads to more efficient hardware design.
- May 26 2017 cs.CV arXiv:1705.08923v1Following the recent progress in image classification and captioning using deep learning, we develop a novel natural language person retrieval system based on an attention mechanism. More specifically, given the description of a person, the goal is to localize the person in an image. To this end, we first construct a benchmark dataset for natural language person retrieval. To do so, we generate bounding boxes for persons in a public image dataset from the segmentation masks, which are then annotated with descriptions and attributes using the Amazon Mechanical Turk. We then adopt a region proposal network in Faster R-CNN as a candidate region generator. The cropped images based on the region proposals as well as the whole images with attention weights are fed into Convolutional Neural Networks for visual feature extraction, while the natural language expression and attributes are input to Bidirectional Long Short- Term Memory (BLSTM) models for text feature extraction. The visual and text features are integrated to score region proposals, and the one with the highest score is retrieved as the output of our system. The experimental results show significant improvement over the state-of-the-art method for generic object retrieval and this line of research promises to benefit search in surveillance video footage.
- Cooperative multi-agent systems can be naturally used to model many real world problems, such as network packet routing and the coordination of autonomous vehicles. There is a great need for new reinforcement learning methods that can efficiently learn decentralised policies for such systems. To this end, we propose a new multi-agent actor-critic method called counterfactual multi-agent (COMA) policy gradients. COMA uses a centralised critic to estimate the Q-function and decentralised actors to optimise the agents' policies. In addition, to address the challenges of multi-agent credit assignment, it uses a counterfactual baseline that marginalises out a single agent's action, while keeping the other agents' actions fixed. COMA also uses a critic representation that allows the counterfactual baseline to be computed efficiently in a single forward pass. We evaluate COMA in the testbed of StarCraft unit micromanagement, using a decentralised variant with significant partial observability. COMA significantly improves average performance over other multi-agent actor-critic methods in this setting, and the best performing agents are competitive with state-of-the-art centralised controllers that get access to the full state.
- Variational inference is a powerful approach for approximate posterior inference. However, it is sensitive to initialization and can be subject to poor local optima. In this paper, we develop proximity variational inference (PVI). PVI is a new method for optimizing the variational objective that constrains subsequent iterates of the variational parameters to robustify the optimization path. Consequently, PVI is less sensitive to initialization and optimization quirks and finds better local optima. We demonstrate our method on three proximity statistics. We study PVI on a Bernoulli factor model and sigmoid belief network with both real and synthetic data and compare to deterministic annealing (Katahira et al., 2008). We highlight the flexibility of PVI by designing a proximity statistic for Bayesian deep learning models such as the variational autoencoder (Kingma and Welling, 2014; Rezende et al., 2014). Empirically, we show that PVI consistently finds better local optima and gives better predictive performance.
- May 26 2017 stat.ML arXiv:1705.08933v1Gaussian processes (GPs) are a good choice for function approximation as they are flexible, robust to over-fitting, and provide well-calibrated predictive uncertainty. Deep Gaussian processes (DGPs) are multi-layer generalisations of GPs, but inference in these models has proved challenging. Existing approaches to inference in DGP models assume approximate posteriors that force independence between the layers, and do not work well in practice. We present a doubly stochastic variational inference algorithm, which does not force independence between layers. With our method of inference we demonstrate that a DGP model can be used effectively on data ranging in size from hundreds to a billion points. We provide strong empirical evidence that our inference scheme for DGPs works well in practice in both classification and regression.
- We present a deep neural network-based method to perform high-precision, robust and real-time 6 DOF visual servoing. The paper describes how to create a dataset simulating various perturbations (occlusions and lighting conditions) from a single real-world image of the scene. A convolutional neural network is fine-tuned using this dataset to estimate the relative pose between two images of the same scene. The output of the network is then employed in a visual servoing control scheme. The method converges robustly even in difficult real-world settings with strong lighting variations and occlusions.A positioning error of less than one millimeter is obtained in experiments with a 6 DOF robot.
- May 26 2017 math.OC arXiv:1705.08941v1We consider convex optimization problems formulated using dynamic programming equations. Such problems can be solved using the Dual Dynamic Programming algorithm combined with the Level 1 cut selection strategy or the Territory algorithm to select the most relevant Benders cuts. We propose a limited memory variant of Level 1 and show the convergence of DDP combined with the Territory algorithm, Level 1 or its variant for nonlinear optimization problems. In the special case of linear programs, we show convergence in a finite number of iterations. Numerical simulations illustrate the interest of our variant and show that it can be much quicker than a simplex algorithm on some large instances of portfolio selection and inventory problems.
- May 26 2017 cs.CV arXiv:1705.08943v1In this paper, we propose a fully automatic MRI cardiac segmentation method based on a novel deep convolutional neural network (CNN). As opposed to most cardiac segmentation methods which focus on the left ventricle (and especially the left cavity), our method segments both the left ventricular cavity, the left ventricular epicardium, and the right ventricular cavity. The novelty of our network lies in its maximum a posteriori loss function, which is specifically designed for the cardiac anatomy. Our loss function incorporates the cross-entropy of the predicted labels, the predicted contours, a cardiac shape prior, and an a priori term. Our model also includes a cardiac center-of-mass regression module which allows for an automatic shape prior registration. Also, since our method processes raw MR images without any manual preprocessing and/or image cropping, our CNN learns both high-level features (useful to distinguish the heart from other organs with a similar shape) and low-level features (useful to get accurate segmentation results). Those features are learned with a multi-resolution conv-deconv "grid" architecture which can be seen as an extension of the U-Net. We trained and tested our model on the ACDC MICCAI'17 challenge dataset of 150 patients whose diastolic and systolic images were manually outlined by 2 medical experts. Results reveal that our method can segment all three regions of a 3D MRI cardiac volume in $0.4$ second with an average Dice index of $0.90$, which is significantly better than state-of-the-art deep learning methods.