Mark M. Wilde

Mark M. Wilde56

Mar 18 2018 20:12 UTC
Mar 13 2018 02:00 UTC
We consider entanglement-assisted (EA) private communication over a quantum broadcast channel, in which there is a single sender and multiple receivers. We divide the receivers into two sets: the decoding set and the malicious set. The decoding set and the malicious set can either be disjoint or can have a finite intersection. For simplicity, we say that a single party Bob has access to the decoding set and another party Eve has access to the malicious set, and both Eve and Bob have access to the pre-shared entanglement with Alice. The goal of the task is for Alice to communicate classical information reliably to Bob and securely against Eve, and Bob can take advantage of pre-shared entanglement with Alice. In this framework, we establish a lower bound on the one-shot EA private capacity. When there exists a quantum channel mapping the state of the decoding set to the state of the malicious set, such a broadcast channel is said to be degraded. We establish an upper bound on the one-shot EA private capacity in terms of smoothed min- and max-entropies for such channels. In the limit of a large number of independent channel uses, we prove that the EA private capacity of a degraded quantum broadcast channel is given by a single-letter formula. Finally, we consider two specific examples of degraded broadcast channels and find their capacities. In the first example, we consider the scenario in which one part of Bob's laboratory is compromised by Eve. We show that the capacity for this protocol is given by the conditional quantum mutual information of a quantum broadcast channel, and so we thus provide an operational interpretation to the dynamic counterpart of the conditional quantum mutual information. In the second example, Eve and Bob have access to mutually exclusive sets of outputs of a broadcast channel.
Mar 09 2018 12:16 UTC
Jan 25 2018 02:00 UTC
With the rapid growth of quantum technologies, knowing the fundamental characteristics of quantum systems and protocols is essential for their effective implementation. A particular communication setting that has received increased focus is related to quantum key distribution and distributed quantum computation. In this setting, a quantum channel connects a sender to a receiver, and their goal is to distill either a secret key or entanglement, along with the help of arbitrary local operations and classical communication (LOCC). In this work, we establish a general theory of energy-constrained, LOCC-assisted private and quantum capacities of quantum channels, which are the maximum rates at which an LOCC-assisted quantum channel can reliably establish secret key or entanglement, respectively, subject to an energy constraint on the channel input states. We prove that the energy-constrained squashed entanglement of a channel is an upper bound on these capacities. We also explicitly prove that a thermal state maximizes a relaxation of the squashed entanglement of all phase-insensitive, single-mode input bosonic Gaussian channels, generalizing results from prior work. After doing so, we prove that a variation of the method introduced in [Goodenough et al., New J. Phys. 18, 063005 (2016)] leads to improved upper bounds on the energy-constrained secret-key-agreement capacity of a bosonic thermal channel. We then consider a multipartite setting and prove that two known multipartite generalizations of the squashed entanglement are in fact equal. We finally show that the energy-constrained, multipartite squashed entanglement plays a role in bounding the energy-constrained LOCC-assisted private and quantum capacity regions of quantum broadcast channels.
Jan 15 2018 14:24 UTC
Jan 10 2018 02:00 UTC
Holevo's just-as-good fidelity is a similarity measure for quantum states that has found several applications. One of its critical properties is that it obeys a data processing inequality: the measure does not decrease under the action of a quantum channel on the underlying states. In this paper, I prove a refinement of this data processing inequality that includes an additional term related to recoverability. That is, if the increase in the measure is small after the action of a partial trace, then one of the states can be nearly recovered by the Petz recovery channel, while the other state is perfectly recovered by the same channel. The refinement is given in terms of the trace distance of one of the states to its recovered version and also depends on the minimum eigenvalue of the other state. As such, the refinement is universal, in the sense that the recovery channel depends only on one of the states, and it is explicit, given by the Petz recovery channel. The appendix contains a generalization of the aforementioned result to arbitrary quantum channels.
Dec 04 2017 02:00 UTC
In the literature on the continuous-variable bosonic teleportation protocol due to [Braunstein and Kimble, Phys. Rev. Lett., 80(4):869, 1998], it is often loosely stated that this protocol converges to a perfect teleportation of an input state in the limit of ideal squeezing and ideal detection, but the exact form of this convergence is typically not clarified. In this paper, I explicitly clarify that the convergence is in the strong sense, and not the uniform sense, and furthermore, that the convergence occurs for any input state to the protocol, including the infinite-energy Basel states defined and discussed here. I also prove, in contrast to the above result, that the teleportation simulations of pure-loss, thermal, pure-amplifier, amplifier, and additive-noise channels converge both strongly and uniformly to the original channels, in the limit of ideal squeezing and detection for the simulations. For these channels, I give explicit uniform bounds on the accuracy of their teleportation simulations. These convergence statements have important implications for mathematical proofs that make use of the teleportation simulation of bosonic Gaussian channels, some of which have to do with bounding their non-asymptotic secret-key-agreement capacities. As a byproduct of the discussion given here, I confirm the correctness of the proof of such bounds from my joint work with Berta and Tomamichel from [Wilde, Tomamichel, Berta, IEEE Trans. Inf. Theory 63(3):1792, March 2017], which has recently been questioned in the literature. Furthermore, contrary to some recent claims in the literature, I show that it is not necessary to invoke the energy-bounded diamond distance in order to confirm the correctness of this proof.
Oct 30 2017 02:00 UTC
The quantum relative entropy is a measure of the distinguishability of two quantum states, and it is a unifying concept in quantum information theory: many information measures such as entropy, conditional entropy, mutual information, and entanglement measures can be realized from it. As such, there has been broad interest in generalizing the notion to further understand its most basic properties, one of which is the data processing inequality. The quantum f-divergence of Petz is one generalization of the quantum relative entropy, and it also leads to other relative entropies, such as the Petz-Renyi relative entropies. In this paper, I introduce the optimized quantum f-divergence as a related generalization of quantum relative entropy. I prove that it satisfies the data processing inequality, and the method of proof relies upon the operator Jensen inequality, similar to Petz's original approach. Interestingly, the sandwiched Renyi relative entropies are particular examples of the optimized f-divergence. Thus, one benefit of this paper is that there is now a single, unified approach for establishing the data processing inequality for both the Petz-Renyi and sandwiched Renyi relative entropies, for the full range of parameters for which it is known to hold. This paper discusses other aspects of the optimized f-divergence, such as the classical case, the classical-quantum case, and how to construct optimized f-information measures.
Sep 15 2017 02:00 UTC
Given an entanglement measure $E$, the entanglement of a quantum channel is defined as the largest amount of entanglement $E$ that can be generated from the channel, if the sender and receiver are not allowed to share a quantum state before using the channel. The amortized entanglement of a quantum channel is defined as the largest net amount of entanglement $E$ that can be generated from the channel, if the sender and receiver are allowed to share an arbitrary state before using the channel. Our main technical result is that amortization does not enhance the entanglement of an arbitrary quantum channel, when entanglement is quantified by the max-Rains relative entropy. We prove this statement by employing semi-definite programming (SDP) duality and SDP formulations for the max-Rains relative entropy and a channel's max-Rains information, found recently in [Wang et al., arXiv:1709.00200]. The main application of our result is a single-letter, strong-converse, and efficiently computable upper bound on the capacity of a quantum channel for transmitting qubits when assisted by positive-partial-transpose (PPT) preserving channels between every use of the channel. As the class of local operations and classical communication (LOCC) is contained in PPT, our result establishes a benchmark for the LOCC-assisted quantum capacity of an arbitrary quantum channel, which is relevant in the context of distributed quantum computation and quantum key distribution.
Sep 06 2017 02:00 UTC
We study quantum channels that are close to another channel with weakly additive Holevo information and derive upper bounds on their classical capacity. Examples of channels with weakly additive Holevo information are entanglement-breaking channels, unital qubit channels, and Hadamard channels. Related to the method of approximate degradability, we define approximation parameters for each class above that measure how close an arbitrary channel is to satisfying the respective property. This gives us upper bounds on the classical capacity in terms of functions of the approximation parameters, as well as an outer bound on the dynamic capacity region of a quantum channel. Since these parameters are defined in terms of the diamond distance, the upper bounds can be computed efficiently using semidefinite programming (SDP). We exhibit the usefulness of our method with two example channels: a convex mixture of amplitude damping and depolarizing noise, and a composition of amplitude damping and dephasing noise. For both channels, our bounds perform well in certain regimes of the noise parameters in comparison to a recently derived SDP upper bound on the classical capacity. Along the way, we define the notion of a generalized channel divergence (which includes the diamond distance as an example), and we prove that for jointly covariant channels these quantities are maximized by purifications of a state invariant under the covariance group. This latter result may be of independent interest.
Aug 25 2017 02:00 UTC
We establish several upper bounds on the energy-constrained quantum and private capacities of all phase-insensitive Gaussian channels. The first upper bound, which we call the "data-processing bound," is the simplest and is obtained by decomposing a phase-insensitive channel as a pure-loss channel followed by a quantum-limited amplifier channel. We prove that the data-processing bound can be at most 1.45 bits larger than a known lower bound on these capacities of the phase-insensitive Gaussian channel. The other two upper bounds, which we call the ``$\varepsilon$-degradable bound'' and the ``$\varepsilon$-close-degradable bound,'' are established using the notion of approximate degradability along with energy constraints. We find a strong limitation on any potential superadditivity of the coherent information of any phase-insensitive Gaussian channel in the low-noise regime, as the data-processing bound is very near to a known lower bound in such cases. We also find improved achievable rates of private communication through bosonic thermal channels, by employing coding schemes that make use of displaced thermal states. We end by proving that an optimal Gaussian input state for the energy-constrained, generalized channel divergence of two particular Gaussian channels is the two-mode squeezed vacuum state that saturates the energy constraint. What remains open for several interesting channel divergences, such as the diamond norm or the Rényi channel divergence, is to determine whether, among all input states, a Gaussian state is optimal.
Jul 26 2017 02:00 UTC
This paper defines the amortized entanglement of a quantum channel as the largest difference in entanglement between the output and the input of the channel, where entanglement is quantified by an arbitrary entanglement measure. We prove that the amortized entanglement of a channel obeys several desirable properties, and we also consider special cases such as the amortized relative entropy of entanglement and the amortized Rains relative entropy. These latter quantities are shown to be single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of a quantum channel, respectively. Of especial interest is a uniform continuity bound for these latter two special cases of amortized entanglement, in which the deviation between the amortized entanglement of two channels is bounded from above by a simple function of the diamond norm of their difference and the output dimension of the channels. We then define approximately teleportation- and positive-partial-transpose-simulable (PPT-simulable) channels as those that are close in diamond norm to a channel which is either exactly teleportation- or PPT-simulable, respectively. These results then lead to single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of channels that are approximately teleportation- or PPT-simulable, respectively. Finally, we generalize many of the concepts in the paper to the setting of general resource theories, defining the amortized resourcefulness of a channel and the notion of $\nu$-freely-simulable channels, connecting these concepts in an operational way as well.
Jul 21 2017 02:00 UTC
It is well known in the realm of quantum mechanics and information theory that the entropy is non-decreasing for the class of unital physical processes. However, in general, the entropy does not exhibit monotonic behavior. This has restricted the use of entropy change in characterizing evolution processes. Recently, a lower bound on the entropy change was provided in the work of Buscemi, Das, and Wilde~[Phys.~Rev.~A~93(6),~062314~(2016)]. We explore the limit that this bound places on the physical evolution of a quantum system and discuss how these limits can be used as witnesses to characterize quantum dynamics. In particular, we derive a lower limit on the rate of entropy change for memoryless quantum dynamics, and we argue that it provides a witness of non-unitality. This limit on the rate of entropy change leads to definitions of several witnesses for testing memory effects in quantum dynamics. Furthermore, from the aforementioned lower bound on entropy change, we obtain a measure of non-unitarity for unital evolutions.
Jul 11 2017 16:06 UTC
Mark M. Wilde scited One-Shot Coherence Dilution
Jul 11 2017 16:05 UTC
Jun 30 2017 02:00 UTC
The quantum Renyi relative entropies play a prominent role in quantum information theory, finding applications in characterizing error exponents and strong converse exponents for quantum hypothesis testing and quantum communication theory. On a different thread, quantum Gaussian states have been intensely investigated theoretically, motivated by the fact that they are more readily accessible in the laboratory than are other, more exotic quantum states. In this paper, we derive formulas for the quantum Renyi relative entropies of quantum Gaussian states. We consider both the traditional (Petz) Renyi relative entropy as well as the more recent sandwiched Renyi relative entropy, finding formulas that are expressed solely in terms of the mean vectors and covariance matrices of the underlying quantum Gaussian states. Our development handles the hitherto elusive case for the Petz--Renyi relative entropy when the Renyi parameter is larger than one. Finally, we also derive a formula for the max-relative entropy of two quantum Gaussian states, and we discuss some applications of the formulas derived here.
Jun 22 2017 02:00 UTC
We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of the broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.
Jun 20 2017 17:26 UTC
Jun 20 2017 17:26 UTC
Jun 15 2017 02:00 UTC
Upper bounds on the secret-key-agreement capacity of a quantum channel serve as a way to assess the performance of practical quantum-key-distribution protocols conducted over that channel. In particular, if a protocol employs a quantum repeater, achieving secret-key rates exceeding these upper bounds is a witness to having a working quantum repeater. In this paper, we extend a recent advance [Liuzzo-Scorpo et al., arXiv:1705.03017] in the theory of the teleportation simulation of single-mode phase-insensitive Gaussian channels such that it now applies to the relative entropy of entanglement measure. As a consequence of this extension, we find tighter upper bounds on the non-asymptotic secret-key-agreement capacity of the lossy thermal bosonic channel than were previously known. The lossy thermal bosonic channel serves as a more realistic model of communication than the pure-loss bosonic channel, because it can model the effects of eavesdropper tampering and imperfect detectors. An implication of our result is that the previously known upper bounds on the secret-key-agreement capacity of the thermal channel are too pessimistic for the practical finite-size regime in which the channel is used a finite number of times, and so it should now be somewhat easier to witness a working quantum repeater when using secret-key-agreement capacity upper bounds as a benchmark.
Apr 06 2017 02:00 UTC
Recently, a coding technique called position-based coding has been used to establish achievability statements for various kinds of classical communication protocols that use quantum channels. In the present paper, we apply this technique in the entanglement-assisted setting in order to establish lower bounds for error exponents, lower bounds on the second-order coding rate, and one-shot lower bounds. We also demonstrate that position-based coding can be a powerful tool for analyzing other communication settings. In particular, we reduce the quantum simultaneous decoding conjecture for entanglement-assisted or unassisted communication over a quantum multiple access channel to open questions in multiple quantum hypothesis testing. We then determine achievable rate regions for entanglement-assisted or unassisted classical communication over a quantum multiple-access channel, when using a particular quantum simultaneous decoder. The achievable rate regions given in this latter case are generally suboptimal, involving differences of Renyi-2 entropies and conditional quantum entropies.